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PREFACE

The work desscribed in this final report was performed in support of the
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was performed by Assistant Professor Frank van Graas of Ohio University,
Athens, Ohio. The PPA manager is M. J. Moroney (RSPA/VNTSC/DTS-52).

One of the major elements in alleviating existing problems in en route
airspace is to allow more aircraft to traverse a given volume of airspace.
Recent developments in navigation systems will support this effort by enabling
user preferred routes and by offering more precise and reliable navigational
capabilities. One develpment of specific interest is the integration of GPS
and LORAN-C to acheive a sole means of navigation. This report addresses the
capabilities offered by multisensor navigation systems in general with
emphasis on signal processing techniques and receiver autonomous integrity
monitoring (RAIM). In addition this report details the design,
implementation, and flight testing of a protype hybrid GPS/LORAN navigation
system.
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i XECUTIVE

The work described in this final report was performed in support of the
Federal Aviation Administration. Jerry W. Bradley (ASE-300) is the sponsor's
program manager.

This report is a deliverable under Task 2 of PPA No. FA-160. Assistant
Professor Frank van Graas and Mr. Mark Kuhl of Ohio University, Atl.ens, Ohio
performed the work and are the authors of this report. The PPA manager is M.
J. Moroney (RSPA/VNTSC/DTS-52).

One of the major elements in alleviating existing problems in en route
airspace is to allow more aircraft to traverse a given volume of airspace.
Recent developments in navigation systems will support this effort by enabling
user preferred routes and by offering more precise and reliable navigational
capabilities. One development of specific interest is the integration of GPS
and LORAN-C to achieve a sole means of navigation. This report addresses the
capabilities offered by multisensor navigation systems in general with
emphasis on signal processing techniques and receiver autonomous integrity
monitoring (RAIM). In addiuion this report details the design, implementation,
and flight testing of a protype hybrid GPS/LORAN navigation system.

The first part of this report shows the derivation of the ordinary ieast
squares (OLS) estimator from the linear model using the Projection Theorem.
The performance of the OLS is subjected to a detailed error analysis which
includes the effects of geometry and measurement errors, both bias and noise.
Using similar procedures, the extended Ridge and Kalman filters are derived
which are representative for the classes of biased and unbiased estimators,
respectively. It is shown that in the presence of measurement bias errors,
both estimators converge to the OLS inflation of the position error. It is
therefore concluded that in the case of dominant measurement bias errors (e.g.
GPS or LORAN), the integrity monitoring performance offered by the OLS
estimator cannot be improved upon. It was also found that the Ridge estimator
can be used to explain/optimize the performance of a mismatched Kalman filter.
This provides a very helpful insight into the performance of the Kalman filter
in the presence of unmodeled dynamics.

Based on the conclusion that the OLS estimator is sufficient to perform
integrity monitoring, a general solution methodology is presented for a
multisensor navigation system. The range residual in agrity parameter was
derived, again using the Projection Theorem.

The above results have been applied to a realtime prototype hybrid
GPS/LORAN receiver. Two flight tests revealed that the hybrid GPS/LORAN
receiver performs in accordance with its design. The course deviation
indicator is responsive and the indicated course compares favorably with other
area navigation equipment. Out of a total of fifteen simulated signal
malfunctions, twelve malfunctions which would have caused unacceptable course
deviations were detected by the range residual integrity algorithm.

Equal weighting of GPS and LORAN measurements is used for the flight
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tests. Therefore, the accuracy of the hybrid system will be mostly determined
by the LORAN measu-ements. Standard LORAN propagation models are used such
that the achieved accuracies are represerative for current LORAN receivers.
Because of this, the accuracy of the hybrid system will not be as good as that
provided by GPS; however, the availability and integrity of the hybrid system
exceeds that of GPS by several orders of magnitude [4]. At the same time, the
hybrid system accuracies were still found to b well within all current
requirements as listed in Chapter 3. It is also concluded that the accuracy
of hybrid GPS/LORAN can be improved upon significantly through LORAN
calibration or by using a wei.ghting matrix in the hybrid solution, see Seccion
6.1.

In summary, hybrid GPS/LORAN is a successful case study of fully hybrid,
multisensor navigation. Similar performance characteristics may be
anticipated for other multisensor systems based on sensors such as CPS. LORAN,
GLONASS, Omega, and baro-altimeter.
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1. INTRODUCTION

One of the major elements in alleviating existing problems in en route
airspace is to allow more aircraft to traverse a given volume of airspace [1].
Recent developments in navigation systems will support this effort by enabling
user preferred routes and by offering more precise and reliable navigational
capabilities. Included in these developments are new satellite technologies
such as the NAVSTAR Global Positioning System (GPS) and improvements of
existing systems such as LORAN-C. One development of specific interest is the
integration of GPS and LORAN-C to achieve a sole means of navigation. Hybrid
GPS/LORAN is setting the stage for a next-generation of multisensor navigation
systems which is anticipated to have a major impact on the safety,
reliability, and efficiency of national and inLernational transportation. A
highly reliable multisensor navigation system will increase low-altitude,
remote and offshore operations. Additionally, a multisensor navigation system
could serve as the position sensor for automatic dependent surveillance (ADS)
and Communication, Navigation, and Surveillance (CNS) services, thereby
increasing the safety and operational efficiency of the Air Traffic Control
(ATC) System.

The first part of this report, Chapters 2 through 6, addresses
multisensor navigation systems in general, with emphasis on signal processing
techniques and receiver autonomous integrity monitoring (RAIM). RAIM is
recommended to be used as the integrity technique for a multisensor navigation
system. The second part of this report, Chapters 7 through 10, details the
design, implementation, and flight testing of a prototype hybrid GPS/LORAN
navigation system. Chapters 11 and 12 contain conclusions and recommendations
for future efforts, respectively.



2. PRINCIPLES OF POSITION FIXING

2.1 Path Delay Systems

Two basic methods exist for a vehicle to determine its position: dead
reckoning and position fixing. Position determination using a dead reckoning
method involves projecting a known position forward to some future time by
keeping continuous track of velocity, accelerations, or both. Examples are
Doppler and Inertial Reference Systems. A position fix method involves a
vehicle sensing landmarks and determining an instantaneous position without
reference to any former position. Landmarks are at known locations on or
around the earth. Examples of landmarks are the Very High Frequency
Omnidirectional Range (VOR) stations, the Global Positioning System (GPS)
satellites, and stars (celestial fixes).

A vehicle can obtain range (p) or bearing (e) information from the
landmarks by measuring parameters such as phase delay and pulse time of
arrival (TOA) delay. These make up what are called path delay systems (see
Kelly and Cusick [2]). Extending the classifications presented by Kelly and
Cusick, path delay systems may be of four different types: single path,
multiple paths in three dimensions, multiple paths in four dimensions, and
combinations. The four different types of path delay systems are shown in
Figure 2.1.

Single path systems may be classified as either active or passive. An
active single path system requires only one landmark to determine a range.
The user in an active single path system transmits a signal to the landmark
and listens for a reply. The range is then determined by multiplying half the
round trip delay time by the speed of transmission of the signal. To measure
the round trip delay time, the user clock needs only to be stable during the
measurement time. A crystal oscillator is a sufficient frequency reference
source for an active single path measurement. Examples of active single path
systems include the Distance Measuring Equipment (DME) system and radio
detecting and ranging (RADAR) systems. A receiver in a passive single path
system measures path delay times (or ranges) with respect to known
transmissions from landmarks. This method requires that the user clock be
synchronized with the transmitter. Furthermore, both the user clock and the
transmitter clock must be stable throughout the mission time. As an example,
if one of the frequency reference sources drifts one part in 1011 (Rubidium
standard), then after 1000 seconds the clock would have drifted 10
nanoseconds, which corresponds to a drift in the range measurement of
approximately 10 feet. Passive single path systems are currently not used for
vehicle navigation.

Three-dimensional multiple path systems measure differences in reception
time (or compare the path delays) between at least two landmarks and the
receiver, or use multiple range measurements. These systems may be classified
as true hyperbolic, radial or spherical. True hyperbolic systems determine
when time or frequency differences in the path delays are constant. This
yields a hyperbolic line of position (LOP). When the time or frequency
difference in the path delays are zero, a straight LOP will result. This is
called a radial system. Examples of hyperbolic systems are LORAN-C and Omega,
while an example of a radial system is VOR. An example of an active spherical
system is multiple DME. Spherical systems reduce to a circular system if the
altitude of the vehicle is known. An example of a passive two-path system is
the two-station French LORAN-C chain [3].
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Figure 2.1 Types of path delay systems used for navigation (extended
from the classifications presented in reference (2]).
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Four-dimensional multiple path systems are similar to spherical systems
without synchronized clocks. The passive measurements to the landmarks are
called "pseudoranges" (or "pseudofrequencies") because the measurements
contain an unknown clock phase (or frequency) offset. Therefore, the user
must solve for its clock phase or frequency offset with respect to the
landmarks. The unknown receiver clock phase or frequency adds another
dimension to be solved for in the position solution. Examples of four-
dimensional multiple path systems are the Global Positioning System (GPS) and
the Global Navigation Satellite System (GLONASS). These two worldwide
satellite systems are sponsored by the United States and the Soviet Union,
respectively.

In order to improve accuracy, availability, reliability and integrity,
the above path delay systems may be combined [4J. With the focus on aircraft
positioning, combinations of the various path delay systems can be implemented
in two ways:

(1) Multi-Sensor System
(2) Hybrid System

A multi-sensor system incorporates navigation data from landmarks which
are selected by the system operator or by some type of automatic selection
scheme. As specified in Federal Aviation Administration (FAA) Advisory
Circular 20-130 [5], a multi-sensor system may be approved for instrument
flight rules (IFR) enroute and terminal navigation within the conterminous
United States (CONUS). But for instrument approaches, only navigation data
from landmarks which are already individually approved for charted instrument
approaches may be selected. Moreover, a sole means of navigation must be
installed and operable at the same time [6).

A hybrid system uses navigation data from all landmarks that are
available for all phases of flight (enroute, terminal and approach). For a
hybrid system, no selection process is exercised. An example of a hybrid
system may be GPS/LORAN-C. Alone, GPS and LORAN-C will not meet sole means
requirements for navigation (7]. But by combining these two systems into a
hybrid system, sole means requirements could be satisfied [8]. A
"multisensor" hybrid system - or simply called a multisensor system - arises
from the fact that many systems may be combined for navigation, i.e. a hybrid
system consisting of GPS, GLONASS, DME, VOR, Omega and LORAN-C. Currently,
navigation requirements have not been defined for hybrid systems, see Chapter
3.

2.2 Classification of Position Fix Methods

The way a vehicle determines a position fix from the information
provided by the landmarks may be classified into several different methods:

(1) Triangulation Method
(2) Trilateration Method
(3) Polar Method
(4) Hyperbolic Method
(5) Combinations of Methods

These methods are discussed below for a two-dimensional (2-D) position fix.

4



(1) Triangulation Method (e-e)

Bearing information from two different landmarks may be used to obtain a
position fix. This method is called triangulation and is depicted in Figure
2.2. The method proceeds as follows: Each of the two stations provides the
vehicle with a certain bearing angle from true or magnetic North with respect
to the station. These bearing angles will cross at only one location, giving
a unique position fix. VOR stations are an example of a navigation system
that transmits bearing information to the vehicle.

(2) Trilateration Method (p-p)

Range information from two different landmarks may be used to obtain a
position fix. This method is called trilateration and is portrayed in Figure
2.2. The method proceeds as follows: A particular range is provided by each
of the two stations. Each range defines a circle of positions on which a
vehicle may be located. The two circles will cross at two locations - one
being the correct vehicle position and the other being an ambiguous solution.
The ambiguous solution may be eliminated by using prior information,
additional information such as speed or heading, or a third station. DME
stations are an example of a navigation system that provides range information
to the vehicle. In three dimensions, the range from a DME station is called a
slant range to take into account the altitude of the vehicle. Also, GPS and
GLONASS are navigation systems from which a vehicle can determine a three-
dimensional position fix based on ranges between the vehicle and four
satellites in the system. (The fourth satellite is needed to resolve the
receiver clock offset from the system clock.)

(3) Polar Method (p-e)

Range and bearing information from a single landmark may also be used to
acquire a position fix. This method is called the polar method and is shown
in Figure 2.3. The method proceeds as follows: One station provides the
vehicle with both a bearing angle and a range. As stated before, the range
gives a circle of possible positions; and the bearing angle indicates where on
that circle the vehicle is located. The VOR/DME stations and Tactical Air
Navigation (TACAN) stations are examples of navigation systems that transmit
both range and bearing information to the vehicle.

(4) Hyperbolic Method

Another method, called the hyperbolic method, uses lines of constant
time difference (TD) between two pairs of landmarks to determine a position
fix. The hyperbolic method is also depicted in Figure 2.3; and it requires
three different landmarks (stations 1 and 2 make up one pair while stations 2
and 3 constitute the second pair). The method proceeds as follows: Station 1
transmits a signal which is received by the user at some later time. The same
transmission is also received by station 2. Upon reception of the signal from
station 1, station 2 transmits a signal. A constant difference between the
time of arrivals of the signals from station 2 and station 1 define a
hyperbolic LOP, on which the user is located. In the same way, a second pair
of stations is used to determine another hyperbolic LOP. Where these two
hyperbolic LOPs cross gives a position fix for the vehicle. LORAN-C and Omega
are examples of navigation systems that employ time differencing for position
fixing.

5
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As a special note, LORAN-C may be used in the passive ranging mode as
well as in the hyperbolic mode of operation.

(5) Combinations of Methods

The above methods may be combined in various ways to obtain a position
fix. This gives rise to a multisensor navigation system: a vehicle may
integrate information from all the available navigation systems to obtain an
optimum position fix.

2.3 Position Fixing Accuracies of Current Path Delay Systems

Range and bearing measurements are subject to a variety of error
sources, including measurement errors, noise sources (atmospheric and man-
made), multipath, unmodeled ionospheric and tropospheric propagation delays,
clock errors and landmark location uncertainty. (References [9] and [10]
provide a detailed description of the error sources affecting the GPS in
particular.)

Measurement errors propagate into position errors as a function of
geometry and solution methods. Table 2.1 summarizes the accuracies of current
U.S. radionavigation systems (compiled from the 1990 edition of the Federal
Radionavigation Plan (FRP) [11)). These accuracies are 95% confidence level
numbers, meaning that statistically at least 95% of the position estimates
will be within the value listed. An exception to this accuracy level
specification are the 2-D accuracies. The 2 drms (distance root mean square)
numbers are used where 2-D accuracies are specified. As shown in reference
[12], 2 drms numbers may have anywhere from a 95% to a 98% confidence level.
(Two different accuracies are shown for the GPS in Table 2.1 because the GPS
offers two navigation services: Precise Positioning Service (PPS) for
military users and Standard Positioning Service (SPS) which anybody can use.)
At this time, the accuracies for GLONASS are not clearly defined, although the
system should have similar performance characteristics as the GPS.
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Navigation System Accuracy (95% confidence level)

VOR ± 1.4°

DME 185 meters

TACAN ± 1, 185 meters

Radiobeacons ± 3 - 100

Omega 3.7 - 7.4 kilometers

LORAN-C 460 meters

Transit

single frequency 500 meters

dual frequency 25 meters

GPS

SPS (civil) 100 meters (horizontal)
156 meters (vertical)

PPS (military) 17.8 meters (horizontal)
27.7 meters (vertical)

Table 2.1 Accuracies of current navigation systems as
specified by the 1990 FRP (11].
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3. REQUIREMENTS FOR AIRBORNE POSITION FIXING SYSTEMS

Two types of navigation systems must be considered when addressing the
navigation requirements: 1. sole means of navigation systems, and 2.
supplemental type navigation systems. The main difference between these two
types of systems is that the sole means of navigation system must have some
level of redundancy to allow for continued navigation in the presence of
signal failures. Supplemental systems only have to announce the failure, upon
which the pilot switches to a sole means of navigation. Therefore,
differences in system requirements are mainly in the areas of integrity and
availability.

Five major performance characteristics that must be satisfied are
accuracy, availability, reliability, coverage and integrity (see reference
[11, 13, 14] for additional requirements). Furthermore, the system must be
compatible with the air traffic control system and the existing airspace
structure, which is largely based on VOR/DME. Most of the requirements for
sole means navigation are well understood and documented, except for
availability and integrity requirements. The FAA is currently developing a
regulation that will establish minimum standards under which a radionavigation
system may be certified as the sole radionavigation system. The Advance
Notice of Proposed rulemaking has been distributed [13].

The focus of this report is on the feasibility of receiver autonomous
integrity monitoring schemes to supply the integrity information. In the case
of a multisensor navigation system, many redundant measurements are available
to determine the validity of the position solution.

For supplemental navigation, the performance requirements in the areas
of accuracy and integrity are taken from reference [15], and are summarized in
Table 3.1. The following notes are provided to explain some of the quantities
in Table 3.1:

1. Detection probability is defined as a conditional probability; it is
the probability of not detecting an out-of-tolerance condition given
that an out-of-tolerance condition is present. The detection
probability must be guaranteed at each space/time point. It is assumed
that errors that are hard to detect are slowly growing bias errors (of
order 2 m/s) and that these errors occur approximately once every two
years for each satellite, which corresponds to a probability of
occurrence of 10-6. This then yields an overall detection probability
of 1 - 10"9 . Consequently, the alarm threshold would be exceeded with a
probability of i0"9. (The detection probability is on a per sample
basis).

2. All accuracy specifications are on a 95% probability basis.
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r I

Phase of Flight I I Nonprecision
Enroute I Terminal I Approach

Performance II. F
Position Fixing 0.124 nmi I 0.124 nmi 0.124 nmi
Radial Accuracy II.II I.

Flight Technical 1.00 nmi I 1.00 nmi I 0.50 nmi
Error (crosstrack) (2.00 oceanic) IF I

Total Radial 1.008 nmi I 1.008 nmi 0.515 nmi
Accuracy (2.004 oceanic)l I

Radial Alarm ThresholdI 2.00 nmi i 1.00 nmi I 0.30 nmiI.I I F
Maximum Allowable ( 0.002/Hr 0.002/Rr 0.002/Hr

Alarm Rate

Time to Alarm i 30 sec. I 10 sec. I 10 sec.

Minimum Detection I .999 I .999 1 .999
Probability I

Table 3.1 Tentative accuracy and integrity requirements
for supplemental GPS (from ref. 1152).

11



4. THEORY OF LINEAR REGRESSION

This section covers the general topic of estimating a vehicle position
fix given range measurements with respect to landmarks. The ordinary least
squares (OLS) estimator is presented; and it is shown that the OLS estimator
results in an unbiased position solution. An error criterion, called the mean
square error (MSE), is defined in order to analyze the performance of position
estimators. Next, the effects of geometry on the position fix are addressed.
Finally, a DME simulation is presented which provides insight into the
performance of the OLS estimator under poor geometry conditions.

4.1 The General Linear Model

As stated in Section 2.1, all path delay systems provide either a range
or bearing from which a vehicle can obtain a position fix. The position fix
is an estimate because of errors in the measurement data. Since the data
exhibit a significant degree of error or "noise", the strategy is to find a
position fix that best represents the general trend of the data, which is
accomplished through the use of regression theory [16].

For this section, assume that the measurement data consist of range
measurements, which are related to a position fix by a nonlinear model. Since
the relation is nonlinear, one must first linearize the relation by taking a
Taylor series expansion around some given reference point (usually the initial
estimate) E17), see Section 4.4.1. The general linear model is given by

Y = HQ + AB + e (4.1)

where Y is the n x 1 data vector which consists of n range measurements, H is
the known n x p design matrix which may include linearized terms which
represent a nonlinear system and A is the p x 1 regressor vector to be
estimated. For navigation, the elements of P may be position, velocity,
acceleration and clock offset. (p is also known as the system state vector.)
The e vector represents zero mean, uncorrelated, normally distributed noise on
the range measurements, i.e. e - N(O,R) where R is the known covariance matrix
of e and N signifies the normal distribution. The covariance matrix is
determined as follows

R - E[eeT] _ a21 (4.2)

where E signifies the expected value, a is the standard deviation of the
measurement noise and I is the identity matrix (the off-diagonal elements of R
are zero because the noise is uncorrelated). Bias errors, represented by the
AB vector, also exist on the range measurements. Bias errors are seen as
constant and unknown to the estimator. In this section, the analysis of
noise-only on the measurement data will be performed. Section 4.5 covers the
case of both noise and bias errors. Without bias errors, the linear model is
given by

Y - Ho + (4.3)

Many techniques have been developed to solve the above equation; the most
straightforward being the ordinary least squares (OLS) estimator.
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4.2 Ordinary Least Sqt'ares (OLS) Estimator

The OLS estimator is developed as follows. The residuals after
estimating P in the linear model are given by

ER = Y - Hb = Y - Y (4.4)

where eR is the residual vector, A is an estimate of p and t is the estimated
measurement vector. Using the Projection Theorem (18,19], project the
measurements, Y, from the measurement space onto the estimation space such
that the distance between true Y and estimated X is a minimum. This is shown
in Figure 4.1. Therefore, Y is orthogonal to R' or

T eR - 0

(HA)T(X - H) - 0
T HT(X - HA) _ 0

AT(HTy - HTHA) _ 0 (4.5)

The problem is to solve this equation for A. Since A is usually not zero, the
terms inside the parenthesis must be set to zero. This yields the OLS
estimator

HTY - HTHA = 0

HTy = HT k± called the "normal equation"

A (HTH)-'HTy = AOLS (4.6)

Substituting equation 4.3 into equation 4.6 gives

AOLS = (HTH)-IHTHp + (HTH)'HT e

AOLS = P + (HTH) eHTe (4.7)

From equation 4.7 the expected value, or mean, of the OLS estimator is

E[AOLS] = E[p + (HTH)-'HTe]

E[AOLS] - (4.8)

since the expected value of e is zero. Therefore, the OLS estimator is an

unbiased estimator. The bias is zero, denoted by

BIAS[AOLS] - 0 (4.9)

The variance of the OLS estimator is

VAR[ OLS] - E[AOLS2 ] - [E(AoLS)] 2

VARILOLS ] - o2TRACE[(H TH) "*] (4.10)

where a is the standard deviation of the measurement noise and the TRACE
operator is the sum of the diagonal elements of a matrix.
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Figure 4.1 Measurement space anid estimation space with Projection
Theorem geometry (reference (19]).
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4.3 Mean Square Error (MSE) Error Criterion

The OLS estimator minimizes the sum of t.. squares of the residuals,

SS(eR), which is given by

SS(eR) = (X - H)T(X - H)(4.11)

where = OLS for minimum SS(e2). However, for navigation purposes the
appropriate error criterion is the mean square error (MSE). The MSE indicates
how far off the estimated position is from the true position. It includes
both bias errors in the solution as well as variance. For the OLS estimator,
the MSE is given by

MSEIAOLS] = E[(AOLS - P)T( oLS - 0)

MSE[QOLS) = E[(p + (HTH)lHTe - _)T(p + (HTH)-eHT - P)]

MSE[AOLS] - o2TRACE[(HTH)-1 ] (4.12)

which is the same as the variance (given by equation 4.10). This should be
expected since the OLS estimator is an unbiased estimator, no bias exists in
the solution. Another way to determine the MSE is as follows

MSE[&OLS] = BIAS[AOLS ] + VAR[AOLS]

MSE[PoLS] = 0 + VAR[QOLS]

MSE[POLS] = C TRACE[(H1H)- ']  (4.13)

In the case of vehicle positioning, the OLS estimator minimizes the
SS(e ), not the MSE. Since the OLS estimator does not allow a bias to exist
in the solution, it restricts the MSE to include only the variance term. This
variance inflates significantly when a "poor geometry" condition arises among
the landmarks and the vehicle. Geometry effects on position fixing will be
discussed in the next section.

4.3.1 Geometry Effects on Position Fixing

For position fixing, the geometry of the landmarks with respect to the
vehicle is a major factor in how accurate the position estimate will be in
terms of the MSE. In order to illustrate what is meant by the term geometry,
equation 4.12 is converted into its canonical coordinates using a singular
value decomposition (SVD) of H

H -
x p - Un x n Enxp (VT)pxp (4.14)

where U and VT are defined as orthogonal transformation matrices that
diagonalize H, and Z is a diagonal matrix whose elements are the singular
values of H. The singular values of H are equal to the square root of the

eigenvalues of H (vVi). For a more in depth discussion of the SVD and how it
relates to solving OLS problems, see reference (20]. Therefore, equation 4.12
transforms into

MSE[ OLS) - o2TRACE[ZTZ]
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MSEIAOLS] -2 E (4.15)

where Xi are the eigenvalues of HTH. Note that as the eigenvalues become
smaller, the MSE grows. Small eigenvalues represent an ill-conditioned (or
nearly singular) H matrix. This gives rise to what is considered to be a poor
geometry condition.

Figure 4.2 shows a physical interpretation of the relation between the
eigenvalues and the position fix in two dimensions. When estimating a two-
dimensional position (2-D), a statistical error ellipse is defined [21]. (the
error ellipse will contain 95% to 98% of the position estimates, see reference
[12].) This error ellipse is a function of the range measurement noise and
the eigenvalues. Assuming that the measurement noise is fairly constant, the
error ellipse will inflate when the eigenvalues become small. For the 2-D
case, one of the two eigenvalues will obtain a small value as the crossing
angle, y, becomes small.

For example, y - 90' is considered to be very good geometry while y -
10 is considered to be very poor geometry. The crossing angle is also
depicted in Figure 4.2. If the range measurements from the two DME stations
in Figure 4.2 have a small crossing angle, X 2 will be small; and this will
inflate the error ellipse in the direction corresponding to X2.

"Near collinearity" is another term that is used for the case when a
small crossing angle exists between the range measurements [22]. Nearly
collinear range measurements inflate the range errors into a poor position
estimate. This is what is meant by a poor geometry condition.

4.3.2 GDOP Factor Description

For navigation, the type of geometry condition that exists is portrayed
by a statistical factor called the Geometric Dilution of Precision (GDOP).
The GDOP is defined as follows

GDOP - VTRACE(HTH)-"  (4.16)

Five different types of DOPs are defined below

GDOP - 3-D position and time dilution of precision
PDOP - 3-D position dilution of precision
HDOP - position dilution of precision in the horizontal plane
VDOP - position dilution of precision in the vertical direction
TDOP = time dilution of precision

For satellite navigation (GPS, GLONASS), GDOP is used to represent a 4-
D geometry condition: 3-D position and time (X,Y,Z,T). In the context of
navigation using the GPS, Jorgenson [231 states the following about GDOP

1) GDOP is, in effect, the amplification factor of pseudorange
measurement errors into user errors due to the effect of
satellite geometry.

2) GDOP is independent of the coordinate system employed.
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3) GDOP is a criterion for designing satellite constellations.
4) GDOP is a means for user selection of the four best satellites

from those that are visible.

PDOP is more useful in navigation than GDOP because it is the critical
information needed to calculate position. Also, one may wish to calculate
PDOP by finding the volume of a tetrahedron rather than implementing equation
4.16 [24]. As seen in reference [24], this saves processing time over the
matrix inversion method of equation 4.16 when many possible combinations of
satellites exist.

Furthermore, for aircraft, the vertical position information is obtained
from the baro-altimeter. The good, relative accuracy of the baro-altimeter is
the basis for the vertical separation of aircraft. Therefore, aircraft
positioning using landmarks only requires 2-D information, and subsequently,
HDOP is the parameter of interest. Note that HDOP is dependent on the
coordinate system used as it involves the propagation of measurement errors
into a user-defined horizontal plane.

4.4 DME Simulation Example

A DME simulation is presented to illustrate the points made above about
geometry conditions and how they affect the OLS estimator. The simulation
involves the estimation of an aircraft's position as it travels along a
constant velocity flight path. Figure 4.3 shows the simulation set-up.

4.4.1 DME Simulation Set-Up

Range measurements from two different DME stations are needed to solve
for a two-dimensional position (X,Y) as depicted in Figure 4.3. The equations
are shown below

[(X-Xi) + (Y-Y,)2 ] 112 _ R- (4.17)

where R 1 is the range measurement from the aircraft to DME station i, (X,Y) is
the estimated user position and (Xi,Yi) are the coordinates for DME1 . Using
these two equations, the aircraft estimates its position and velocity. One
way to do this is to linearize the above equation by constructing a Taylor
series expansion around an initial estimate and retaining only the first order
terms.

R+ R + 6X + -- i I6Y (4.18)
ax a2

(X0,Y0 ) (X0,Y0)

where 6X and 6Y are the corrections to the initial aircraft state estimate
(X0,Y0 ). Rio is the initial estimated range to DME station i using the
initial aircraft state estimate. This is shown below

(Xo-XI) + (-Y) 2  2 - Rio (4.19)
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Figure 4.3 DME simulation geometry with a vehicle on a constant
velocity flight path making range measurements to two DME stations.
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The direction cosines, aij, are the cosines of the angles between the

line-of-sight (LOS) vector from the aircraft to DME station i and its
projection along the coordinate axes

aRi  X-X i
-- " = ailaR ±R i

(4.20)

aRi  -Yi
-a12aO. Ri

The measurement model for a constant velocity flight path is given below
for a batch of j measurement sets; J - 1, N. N is the number of range
measurements in a batch interval (ATm). See also Figure 4.3.

6R1 1  ail a 1 2  0 0 6X ell

6R21  a 21 a 2 2  0 0 6Y e21
- - - ---------------- - - - - -- + - - (4.21)

6R 1 2  all a12 ATall ATsa12 V X  e12

6R2 2  a 2 1 a 2 2  ATsa 2 1  AT8 a 2 2  VY e22

6 RlN all a 1 2  (N-1)ATsala (N-1)ATsa 1 2 eIN

6R2N a21  a2 2  (N-1)ATSa2 1  (N-1)ATa 2 2  e2N

6R -H + e

where i is the DME station number, j is the measurement set, VX and Vy is the

aircraft velocity, and 6Ri - Ri - Rio. AT S is the intersample time of the
range measurements in a batch. "

6X and 6Y do not represent the difference in position from one
observation to the next. They represent the initial aircraft position offset
from the start of the constant velocity flight path; or in other words, the
error in the a priori estimate of the aircraft position (X0,t0). The
direction cosines are calculated every batch-interval using new estimates of X
and Y (!,Y).

Based on one batch of measurements, the aircraft estimated state is
updated at time tk as follows

[k - [ J + A J + (N-1)AT
8 [ (4.22)Yk Yo 6Y VY

where VX and Vy are the estimates of velocity.
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4.4.2 Results of the OLS Estimator Using the DME Simulation

In order to evaluate the performance of the batch OLS estimator for
navigation, two cases are analyzed:

(1) A good geometry situation: y - 900 (HDOP - 1.4).
DME station 1 location, [XI Y] - [-1.108e05 0) feet
DME station 2 location, [X2 Y 2] - [3.608e05 0) feet

(2) A poor geometry situation: y - 1° (HDOP - 80).
DME station 1 location, [Xi Y1J = (3.464e05 0) feet
DME station 2 location, [X2 Y 2] - [3.608e05 0) feet

Both cases have the following initial conditions:

true aircraft location, [XTR YTR] = [0 2.000e051 feet
measurement noise, a - 60 feet
measurement bias, AB - [0 0] feet
number of range measurements in a batch, N - 16
aircraft initial position offset, (6X 6Y] - [270 -370] feet

For batch estimation with measurement noise only, note that the position error
inflation is effectively reduced by one over the square root of the number of
measurements in a batch. Since a batch of 16 measurements is used in the
simulation, the position error inflation above is reduced by a factor of 4.

For these two cases, a 1000 iteration Monte Carlo analysis is performed.
For this simulation, the first iteration of the simulation process is repeated
M times (M - 1000), and each time different measurement noise is used. The
results for cases (1) and (2) are shown in Figures 4.4 and 4.5, respectively.
Notice that the errors in Figure 4.4 are in a near circular formation. This
is due to the fact that good geometry exists (y = 900). Figure 4.5 depicts
the position results of the OLS estimator when a poor geometry condition
exists (y - 1'); the solution is still unbiased, but the errors form a rather
large ellipse around the true solution. The MSE, which is the appropriate
error criterion to try to minimize for navigation purposes, is given below in
terms of the square root of the MSE (i.e. SQRT[MSE]) for each case:

(1) SQRT[MSE] - 20 feet (2) SQRT[MSE] - 1177 feet

From these results it can be seen that the OLS estimator's MSE and
associated error ellipse is inflated significantly when a poor geometry
situation exists. To see just when the MSE starts to inflate as the geometry
becomes worse, the results from "small" Monte Carlo analyses for various
crossing angles between the measurements are compiled. In order to obtain
different crossing angles, the location of DME station I is moved in distinct
steps from the good geometry location ([-1.108e05 0] feet) toward the DME
station 2 location ([3.608e05 0] feet). Each step is 4716 feet in the X
direction. At each step a 50 iteration Monte Carlo analysis is implemented
and the SQRT[MSE] is recorded. The crossing angle versus the SQRT[MSE] is
shown in Figure 4.6. From this figure it can seen that the SQRT[MSE] starts
to increase rapidly when the crossing angle becomes less than 6%
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geometry condition (y = 90°).

22



4000

00

3000 _

2000 -

1000
%-4

o 0-

-2000

I0"

-3000 - 0
0

-4000
-3000 -2000 -1000 0 1000 2000 3000

6X Error (feet)

Figure 4.5 Monte Carlo analysis of the OLS estimator in a poor
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4.5 OLS Estimator with Range Measurement Bias Errors

To complete the discussion on the OLS estimator, the MSE equation must
be developed for the case of bias errors as well as noise existing on the
range measurements. Start with the linear model given by equation 4.1

Y - HQ + AB + e (4.23)

Recall that the OLS estimator is given by

AOLS " (HTH)IHTy (4.24)

Substituting the linear model into the OLS estimator yields

AOLS = (HTH)-HTHp + (HTH)IHTAB + (HTH)IHTe

AOLS = P + (HTH).IHTAB + (CTH)-IHTe (4.25)

From equation 4.23 the expected value, or mean, of the OLS estimator is

E[AOLS] f E[P + (HTH).IHT__ + (HTH)-IHTe)
E[ OLS] = + (HTH)'IHTAB (4.26)

Therefore, the OLS estimator's solution bias is

BIAS[AOLS] = (HTH)-IHTAB (4.27)

This shows that the bias of the OLS solution is only a function of the
measur-nent bias errors. If no measurement bias errors exist, then the OLS
solution would be unbiased, as was shown before in Section 4.2. The variance
of the OLS estimator is the same as before

VAR[POLS) - E[AOLS2] - [E(AoLS)] 2

VAR[ OLS] = O2TRACE[(HTH) - 1 ] (4.28)

The MSE equation is then given by

MSE[&OLS] - E[(POLS - )T(AOLS - A)]

MSE[AOLS] - E[( + (HTH)-IHT__ + (HTH)-IHTe - P)T

(P + (HTH)-'HTAB + (HTH)lIHTe -

MSE[&oLs] = BT (HTH)-IT(HTH)I TAB + o2TRACE[(HTH) "I]

Since (HTH)"l is symmetric, (HTH)" IT - (HTH)" ! and the MSE becomes

MSE[AOLS] _ AATH(HTH)-2HTAB + 02TRACE[(HTH) "1]  (4.29)

This completes the discussion on the OLS estimator, which will be used as the
baseline estimation scheme to evaluate the performance of the Kalman filter
and the Ridge regression signal processor presented in the next Section.
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5. THE EXTENDED KALMAN AND RIDGE/KALMAN FILTERS

5.1 Theory of Kalman Filtering

This section moves from the previous discussions on batch processing to
a recursive processing technique. The Kalman filter is presented, which can
be shown to be just a recursive form of the ordinary least squares (OLS)
estimator. For two key references, [25] portrays the inherent equivalence of
OLS estimation and Kalman filter theory; and [26] shows that Kalman filter
theory is essentially the same as random parameter linear regression theory.

5.1.1 Recursive versus Batch Processing

The performance of the batch and the recursive processor is equivalent.
Batch processing gives a position estimate after averaging a group of
measurements over a specified time interval. Usually, it is considered
memoryless, since it only analyzes the measurement group over the given time
interval; no weight is given to the measurements that were received before the
time interval began. A batch processor may also incorporate some type of
previous information (called a priori information), weighted appropriately,
into the linear model [27]. On the other hand, a recursive processor employs
a time-history of measurements received as the a priori information, and
continuously updates the current position estimate (or state) with a
combination of the newly received measurement data and the model estimate
obtained from the previous measurement information.

Below it will be shown how the Kalman filter is developed from the model
with a priori information. Next, issues are discussed involving the selection
of the error covariance matrix (P0) and system covariance matrix (Q).

5.1.2 Kalman Filter Development

In 1960, R. E. Kalman provided an alternative way of formulating the OLS
estimator using state-space methods [28J. The result is what is known today
as the Kalman filter. There are many ways to derive the Kalman filter
including: the Bayesian approach, using the Projection Theorem, and from
properties of Gaussian conditional probability densities. Below, the Bayesian
approach is implemented to develop the Kalman filter from a model that
includes a priori information. This will be shown to form the Kalman filter's
updating step. Since the Kalman filter is a recursive estimator, its updating
step will allow new information to be combined in some way with previously
given measurement information at each time interval.

Assume that the linear model given by equation 4.1 in Section 4.1 has
experimental data concerning P such that the average of all previous
measurements equals go with some uncertainty, X. Using P0 and v, two
equations now define the model: the initial conditions equation and the
linear model equation

A + v (5.1)
X- HP + AB + e (5.2)

Recall that AB represents range measurement bias errors and e - N(O,R) defines
the mean (which is 0) and covariance R - [.eT] of the normally etstributed
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range measurement noise (e). v - WS(0,P 0) defines the mean (which is 0) and
covariance (PO) of v in the weaker form called wide sense (WS) which does not
make any distributional assumptions. P0 is known as the error covariance
matrix and is given by

P0 - E[v v T]  E[(( - - o)T ]  (5.3)

Since the initial conditions are actually random variables, the system state
(p) cannot be propagated with certainty. Therefore, the state itself must be
considered a random variable and the result is a stochastic process [293.

Following the Goldberger-Theil method given in (25), the idea is to use
Do as a measurement

(5.4)[ H e AB

Now, solving for yields the Bayesian solution (kp). As derived in reference
(30], the Bayesian solution, which incorporates the a priori information into
the linear model, is given by

:-= P + HTRl'H] "1 [P- 1Qo + HTR'lY] (5.5)

The linear recursive dynamic model is obtained by placing the estimate kk in
the role of the a priori information P0.

Next, the goal is to rewrite equation 5.5 in a recursive form. The
recursive state model is given by

Pk+l - Ok + wk+1 (5.6)

where 0 is the state transition matrix which represents how a dynamical system
naturally evolves from one state to the next in the absence of a driving
function. (Note that the system would be in a constant state if 0 equals the
identity matrix.) Alsot Hk+l represents the process noise with associated
system covariance matrix, Q - E[wwT].

Following a procedure given by reference [26], equation 5.5 can be
written as

- /k-1 + 'k/k1 Xk) (5.7)

where Pk/k-1 is the predicted estimate of Pk based upon observations up to

k-i, and Pk/k-1 - COV(kk/k-I - Ak) Equation 5.7 is the recursive form of the
Bayesian estimator.

Equation 5.7 can then be transformed into the Kalman filter measurement
update equation by using the Matrix Inversion Lemma The Matrix Inversion
Lemma is used to obtain the following relation: [P + HTR-'H] " ! - P -
PHT(HPHT + R)'HP [18])

P-k Ak/k-1 + Kk(Xk - HkPk/k-1) (5.8)
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where Yk are the new measurements, HkPkikI are the predicted measurements
based on the last k-I estimates, and Kk is called the Kalman gain. Pk/k-1

represents the state estimate before the new measurements are available, while
Pk represents the state estimate after the new measurements are incorporated.
The term (Xk - Hkpk/k-1) forms what are called the innovations; it represents
the part of Xk that cannot be predicted from the previous measurement data.
The innovations are the same as the residuals of the OLS estimator (IR) in the
sense that the Kalman filter minimizes the error in the estimate by making the
innovations white (i.e. 7ero mean and random).

Equation 5.8 may be interpreted as follows: the new "best" state
estimate equals the previous "best" state estimate plus the new information
that is received (the innovations) multiplied by a gain factor. The state
estimates are the best in the sense that the sum of the squares of the errors
are minimized. This makes the filter "matched" to the measurement data being
processed by it. When the Kalman filter model is matched to the data, the
best linear unbiased estimator (BLUE) is obtained [18].

Following reference [25], the gain factor is determined from

Kk = Pk/klH (HkPk/k-H + R) (5.9)

And the error covariance is updated by

Pk - (I - KkHk)Pk/kl (5.10)

The error covariance is propagated by the following equation

Pk+1/k - Pk' T + Q (5.11)

where Q represents the uncertainty in the state model. Figure 5.1, which
emulates a figure given in reference [31], shows how equations 5.6, 5.8, 5.9,
5.10 and 5.11 interact with each other to form the Kalman filter.

Note that 0, Q, and R are not time varying in the above equations (no
"k" follows them). This may not always be true. For example, the system
dynamic model (0) may need to change with time, or the system covariance
matrix (Q) may be updated by some type of adaptive scheme.

The major point of this section is that the Kalman filter is the same as
an OLS estimator made into a recursive process by combining the incoming
measurement data with some a priori information.

5.1.3 The Extended Kalman Filter (EKF)

Since the equations that relate the measurements to the state vector are
usually nonlinear (i.e. the H matrix is nonlinear), an extended Kalman filter
(EKF) is needed. Therefore, a linearization procedure is performed when
deriving the Kalman filter equations. This is shown below.

First, the nonlinear discrete-time system model is as follows

Xk - gk(Pk) + AB + e (5.12)
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Enter the a priori estimate
and its error covariance P

Compute Kalmnan gain:

Kk =Pk/k lH7K(Hkpk/k 1HT + R-

Project Ahead: Update estimate with
measurement Yk

PkI/ P 0'T + 9k = 9k/k-1 + Kk(Xk - Hl!'k/k-1)

PkIk = (I Q kkPi-

Figu-,re 5.1 Kalman filter equations (from reference [31]).
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where gk is a nonlinear vector-valued function which relates the system state
to the measurements (see reference [32]). Then, the linearized model is given
by

6 Xk = 
80k 6Pk + AB + e (5.13)

The gk(4/-k1 )_term signifies that the linearization is taking place around

the estimate, Pk/k-i" Incorporate equation 5.12 into equation 5.7 to obtain

the recursive update equation for the extended Kalman filter

k/k-1 + (Pi~k-1 + HR- Hk)-(HTR-6k) (5.14)

where 6 Yk is the difference between the actual measurements and the predicted
measurements (the innovations) as shown below

6Xk = Xk - gk( k/k-1) (5.15)

And as given by reference (33]

H =- (5.16)

As will be seen in Section 5.6, the extended Kalman filter's update
equation as given by 5.14 is very useful when incorporating ridge regression
theory into the Kalman filter.

5.1.4 Selection of the P0 and Q Matrices in the Kalman Filter

An optimum unbiased estimator arises when both the model and the
estimator match the process which generates the data. Kalman filter
optimization techniques include the selection of P0 and Q based upon past
experience or by adaptively tuning the filter until its innovations
(residuals) become white (i.e. zero mean and random). However, the selection
of the proper Q matrix is usually not a very easy or straightforward task
[31].

For example, the system covariance matrix Q is often set artificially
high such that the Kalman filter can track the vehicle when it encounters
dynamics such as turning-induced accelerations. Therefore, the Kalman filter
allows more noise in the solution during periods of low dynamics. Although
some methods exist for selecting Q adaptively [34], these are stochastic in
nature.

Another problem arises when the Kalman filter is subjected to a poor
geometry condition. In the case of inaccurate P0 and Q matrices (a
mismatched filter), the filter may become biased. The performance of a biased
Kalman filter is not readily understood, as the Kalman filter is optimal and
defined in a Gaussian environment only. Therefore, the performance of a
Kalman filter for a deterministic maneuver in a poor geometry condition cannot
be predicted from the regular Kalman filter equations. Furthermore, near
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collinearity effects cannot be minimized by observing the innovations in the
Kalman filter's update eguation (equation 5.8), because these effects only
appear in the estimator P. This is shown in reference [35].

In applying the Kalman filter to navigation, the MSE is the appropriate
error criterion to be minimized. The MSE of a mismatched Kalman filter is not
necessarily the smallest obtainable. Recall that the MSE is the sum of two
components: the variance term and bias term squared. Since the Kalman filter
is developed from the OLS estimator, it is inherently an unbiased estimator.
This restricts the MSE equation to only onc component - the variance term.

The next section presents a biased estimator derived from ridge
regression theory. A biased estimator is purposely not matched to the process
that generates the data in order to achieve a smaller MSE.

5.2 Theory of Ridge Regression

This section covers a biased estimation technique called ridge
regression. First, the ridge estimator is analyzed with respect to the
ordinary least squares (OLS) estimator through a comparison of mean square
error (MSE) equations. Second, the effects of range measurement noise and
bias errors on the ridge estimator's solution are addressed. Finally, a
linearized recursive ridge processor is developed which explains the behavior
of the extended Kalman filter (EKF).

5.2.1 Historical Perspective

The theory of ridge regression was developed by Arthur Hoerl and Robert
Kennard in 1970 (36] based on some earlier work by Hoerl in 1959 on what he
termed "ridge" analysis because the results he obtained formed what looked
like ridges in the output data [37]. The purpose for the development of ridge
regression was to combat the ill-effects of near collinearity when it arises
in the predictor matrix of a linear regression model. In order to counter
situations with near collinearity, ridge regression introduces a biasing
parameter, K. Statisticians have had much debate over the proper selection of
this biasing parameter [38,39,40] (also see Oman [413 for a confidence bound
approach to selecting K), let alone the fact that many feel that a biasing
parameter should not be added at all (see Efron (42] who points out the heated
controversy among statisticians between biased and unbiased estimation). The
biasing parameter in a sense "unbalances" the normal linear regression model
and causes a bias to exist in the solution. This is in direct conflict with
an unbiased estimator like the OLS estimator which minimizes the sum of the
squares of the errors. (This was examined in Section 4.3.) Further, detailed
information about ridge regression may be found in references [43,44,45].

In 1988, Robert Kelly introduced a ridge regression signal processor for
navigation applications to combat the effects of nearly collinear range
measurements [46]. Inaccuracies in the position solution become highly
inflated when range measurements are nearly collinear. The term poor geometry
is used for cases when range measurements are nearly collinear. In subsequent
developments over the past two years [30,47,48,49], it has been determined
that a proper selection of the biasing parameter can be made based on the
geometry of the range measurements. Therefore, ridge regression may be used
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to improve position estimates obtained from a navigation system in the
presence of poor geometry.

5.2.2 Biased Estimation

Position fixing using any type of navigation system suffers a loss of
accuracy when the range measurements are nearly collinear, i.e poor geometry.
Under such conditions, the range measurement errors are propagated into
position errors which are highly inflated (see Section 4.3.1). To improve
estimation properties when several parameters are to be estimated, the ridge
estimator deliberately induces biases in the solution. This results in a
solution with a consistently smaller mean square error (MSE) than the ordinary
least squares (OLS) solution.

Recall that the MSE consists of the sum of two components; MSE -
Variance + Bias2 . The ridge estimator takes advantage of an extra degree of
freedom, the bias term, which is not used by a OLS estimator. In effect,
small biases induced by the ridge estimator decrease the variance term such
that the overall MSE is smaller than the MSE obtained from an unbiased
estimator, as illustrated in Figure 5.2.

For navigation, the most useful error criterion is the MSE. It
expresses the deviation of the vehicle with respect to its intended path. The
ridge estimator has the property that the MSE in the presence of poor geometry
is much smaller than the MSE of a conventional OLS estimator as discussed
above. It should be noted, however, that the ridge estimator cannot remove a
steady-state bias in the estimator caused by measurement bias errors. This is
shown in Section 5.2.5.1.

5.2.3 The Ridge Estimator

Following Kelly (48], who extends the ridge regression concept as
developed by Hoerl and Kennard [44) for navigation applications, the linear
model for a system with an unknown n x 1 measurement bias vector, AR, and a
measurement noise vector, e, is given by

Y - HQ + AB + e (5.17)

where Y is the n x 1 range measurement vector, P is the p x 1 unknown system
state vector (or parameter vector), and H is the n x p predictor (or design)
matrix which relates the range measurement vector to the system state vector.
Also, the measurement noise is uncorrelated; cov(e + AB) - (eeT] _ 021, where
I is the n x n identity matrix. Recall that the OLS estimate of equation 5.17
is

POLS (HTH)' HTy (5.18)

The corresponding ridge estimate of equation 5.17 is

AR - (HTH + P 1)-
' HTx (5.19)

where PR is the ridge parameter matrix (which is formed from the chosen K
parameters as will be seen in Section 5.2.4). When PR consists of zeros, the
ridge estimator reduces to the OLS estimator. Adding a non-zero ridge
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Figure 5.2 Comparison of unbiased and biased solutions and
definition of the MSE.
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parameter matrix to HTH purposely upsets the balance between the first and
second moment components of p, thereby introducing a bias. Substituting
equation 5.17 into equation 5.19 gives

= GKHTH + G_ B+ CB (5.20)

where G. = (HTH + PR) -1 . From equation 5.20 the expected value (or mean) of
the ridge estimator is

E[ R = C.HTH + GKHT B (5.21)

The following relation is introduced

GKHTHp - p - G PRA (5.22)

which will be used to rewrite equation 5.21. Equation 5.22 can be proven as
follows

(G.HTH)p - (I - GKPR)Q

HTH - GK -  _ G K- G.PR

HTH - GK - I 
- P R

G. - (HTH + Pr

Therefore, the expected value given by equation 5.21 may be rewritten as

E[R] - P - GPRA + G.HTB (5.23)

Then, the ridge estimator's solution bias is seen to be

BIAS[LR] - -CKFRa + GHTAB (5.24)

The variance of the ridge estimator is

VAR[ ]- o2TRACE[G2H T H] (5.25)

where the TRACE operator computes the sum of the diagonal terms of a matrix.

It can be shown that the bias term is a monotonically increasing
function of K while the variance term is a monotonically decreasing function
of K (see reference [35]). This implies that a K value exists which will give
a minimum MSE for the ridge estimator. (Recall that the MSE is defined as
the sum of the variance term and the bias term squared.) Similar to the
derivation of the MSE for the OLS estimator in Section 4.5, the MSE of AR is
given by

MSE[IR] - E[(AR - )T(AR -

MSE[IR] - E[(-GKPRA + GHT B + GHTe)T(-GPR + GETAB + H e)]

MSE[bR ] .fTPRGTG. P s + ABTHGTGETAB -AKTpTGTGHTA- - KBTHG GPfi

+ o2TRACEEGI KH
T H

Since GK and PR are symmetric matrices, their inner products are squares (i.e.
GGKT . G2 and PTP - P2 ). This yields the following equation for the MSE

MSE[fR] ~_TG2 p2 p - 2pTG!PRHT6__ + ABTHG !HTAB + o 2TRACEtG!HTH] (5.26)
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Reference (35] proves that the MSE[PR] is less than or equal to the MSE[POLS]
based on a "slope argument": The slope of the above MSE equation can be shown
to be negative at K - 0. This implies that as K becomes greater than zero,
the MSE will decrease.

5.2.4 Selection of the Ridge Biasing Parameter Based on Geometry Conditions

The problem is to determine the range of K i values for which the MSE of
the ridge estimator is smaller than the MSE of the OLS estimator [50]

MSE[AR] - MSE[AOLS] < 0 (5.27)

The idea is to transform equation 5.27 into its canonical coordinates
such that the proper selection of the K i parameters can clearly be seen.
Canonical coordinates are obtained by implementing a singular value
decomposition (SVD) of H

H n x p - U n x n En x p (VT)pxp (5.28)

where U and VT are defined as orthogonal transformation matrices that
diagonalize H (i.e. make the measurements independent), and E is a diagonal
matrix whose elements are the singular values of H, which are given by

v~i . Also, HTH - vETEVT where LT is a p x p diagonal matrix with elements X±
(the eigenvalues). Additionally, the relations a _ VTP and Aa - UTAB exist
where V' and UT are used to transform the system state vector and measurement
bias vector into their corresponding canonical vectors. The ridge parameter
matrix is also expressed in terms of its canonical coordinates given by

K1  0
K 2

PR-VTPRV- . (5.29)

0

where PC is a p x p diagonal matrix which permits a different ridge biasing
parameter (Ki) to be selected for each element of the canonical system state
vector a.

In order to perform the transformation and rewrite equation 5.27 in
terms of its canonical coordinates, first replace H with E, p with Va, AB with
UA_, and PR with P' in the ridge estimator's MSE equation (equation 5.26)

MSE[ R] - (Va)T(ETZ + PC)' 2pc 2 (Va) - 2(VO)T(ETE + PC) 2 pc2ZT(u__)

+ (U a)Tz(ETE + Pc)-2zT(U__) + o2T ACE[(ETE + Pc)'2ETE]

Since Z is diagonal, ETE - Z2 and ET - M. Since V and U are orthogonal
matrices, then VTV - I and UTU - I. This reduces the previous equation to

MSE[ R] - QT(E 2 + pc)-2pc 2C 2aT(E2 + pc)-2pc,
+ _TE(E 2 + Pc)' 2ZA + 0 2TRACE( 2 + pc)'2E2)
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Now, rewrite the above equation from its matrix form to its subscript form,
given the fact that the diagonal elements of E 2 are given by Xi and Pc are
given by K i for i-l,p

F ' A 2 072

MSE(R i - + (5.30)
+ K )2 + K )2  (Xi + Ki)

2  (Xi + Ki)
21

J

Similarly, perform the same manipulation on the MSE of OLS given in Section
4.5

MSE([OLS) _ ABTH(HTH) -2HT + o 2TRACE[(HTH)JI]

MSE[IOLS ]  (U.q)TE(ETZ)-2ET(U.Aq) + o2TACE((ETz)-I]
HSE[AoLS) - jaTE(Z2)-2Ea + o2TRACE[(E2 ) " I]

MSE[AOLS] -__ -__ + o2TRACE[E 2 ]

p Aa1 2

MSEtPOLS] = + (5.31)
i-iIX i

Now, combining equations 5.30 and 5.31 into inequality 5.27 gives
K2a2 Aa2ki

pO
2

X Ki i

+ +
i-i (X1 + Ki)

2  (Xi + K )
2  ()Xi + K )

2

2K ia i NXj Aa Aa2 C21

- < 0 (5.32)()1+  K )2  Xi X iI

Inequality 5.32 will be satisfied for each i if

2), (KVVa- V-} )2  Aat2  C2

+ < - +- (5.33)

(X i + Ki)
2  (X 1 + K 1 ) 2  X1  A1

Simplifying equation 5.33
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Xi(a 2 X1 ) + Xj(K 1 01 - Aarv') 2 < (X i + Ki) 2 _,a + (X1 + K1 )2)2

o 2X 2 + , 1 (K2a2 - 2K2a1 '1X-Aa1 + .1a1Xj) _ (X2

+ 2K+X 1 + 2 < 0

O 2 X 2 + K l a X 1 - 2 KakJ X 1 a + 2 2 , - , .. 2 2 2~

- 2(X2 - 2K 1) 1 O2 
- K20 2 < 0

2X2 2Ka 1  ia i  2K 1 1Aai + aa2 _ 2,a2 1. 2  2
i i- Ki 2Ki

2Xa~ 2x i 02)j1 1~ja 2K (XA 1 a2 Xta +202) < 0

Kti ii-K i - _K~O K2G

a a2

Therefore,
a1 Kj - 2a 2 < 0 (5.34)

Thus for Ki > 0

1. If a2 < 0, al > 0, there is no Ki > 0 which satisfies 5.34
and Ki - 0, the value for the OLS estimate.

2. If a2 > 0, a, < 0, then 5.34 is satisfied for all Ki > 0.
3. If a2 < 0, a, < 0, then a "large" Kj satisfies 5.34.
4. If a2 > 0, al > 0, then a "small" Ki satisfies 5.34.

These restrictions on K1 must be satisfied if the ridge estimator is to have a
smaller MSE than the OLS estimator whenever a bias component AB, as well as a
variance component a2 is inflated by near collinearity.

In practice the vector a - VTr, which is unknown, is replaced by its
estimate QOLS - VABOLS in equation 5.34. Also required is some information
about the vector _a - UT64B. Normally, for the position fixing problem, only
nominal values of Aa1 are necessary because the selection of Ki using 5.34 is
not a strong function of Aaj [49].

A procedure has been developed to properly choose the values of Ki based
on the geometry condition. The geometry condition is represented by the
eigenvalues (X ) oL BB. Foor 6uoaietry exists when the eigenvalues are small.
As the eigenvalues become small, a biasing parameter (Ki) is added. This
limits the minimum value that the eigenvalues can obtain. But another
restriction exists on the selection of the Ki parameters. This is called a
convergence criterion.
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5.2.5 Selection of the Ridge Biasing Parameter Based on a Convergence
Criterion

The selection of the ridge biasing parameter also depends on a
convergence criterion. This convergence criterion becomes important when bias
errors exist on the range measurements or when there is a large offset in the
initial estimate of position.

5.2.5.1 Convergence Criterion when Range Measurement Bias Errors Exist

Given the fact that a poor geometry condition exists, the ridge
estimator instantaneously reduces the variance inflation when noise errors
exist on the range measurements. Additionally, when bias errors are on the
range measurements, the ridge estimator initially reduces the bias inflation,
but then grows with a certain time constant of convergence to the OLS inflated
solution bias. This can be seen by performing the following analysis.

Recall that the bias of the ridge estimator is given by

BIAS[AR] _ (HTH + R)-R (TH + PR)H (5.35)

Transforming this term into its canonical coordinates yields

Ki N0
BIAS[R]i a - + - (5.36)

Xi + Ki  Xi + K,

The second term of equation 5.36 counteracts the inflation of the measurement
bias errors caused by poor geometry. By inserting a positive Ki value, there
is an initial shrinking of the solution bias. This can be seen more clearly
by looking at the following example.

For Xi - 0.012:

OLS solution (Ki - 0): - 9"13i
Xi

Ridge solution with Ki - 0.05: - 1.76Aa i
Xi + Ki

About a factor of 5 improvement in the solution bias can be expected initially
by using the ridge estimator in this example. However, the ridge solution
bias exponentially converges to the OLS solution bias as shown below.

Start with equation 5.36. Replace the two coefficients in equation 5.36
with C and D
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BIAS[PR]I - -Ca1 + DAQ i  (5.37)

K i  V'X1
where C - D -

Xi  + Ki Xi  + K i

Now, assume only measurement bias errors exist, and propagate the bias errors
(Aaj) into the position solution (ai). Note that as a consequence of the
ridge estimator, truth - - estimate (see equation 5.24 or 5.36).
Perform iterations (n):

n-1: ai - 0, BIAS[AR]i - -C(O) + D =i - D-Aa

n=2: ai = -Dazi, BIAS[AR]i - -C(-Dai) + Duai - (C+I)DA i

n=3: ai - -(C+I)DAai, BIAS(AR]i - -C(-(C+I)DAi) + DN i - (C2+C+I)DAai

D
n*: BIAS[AR]i - Aai (5.38)1 - C

where the (1 - C)-1 term is the result of the geometric series given by (C'-1
+ Cn-2 + --- + 1) as n goes to -. Now substituting the canonical terms back
in for C and D in equation 5.38 yields

Xi + K iBIAS [ R] = " __:___

K i
1-

Xi + Ki

1

BIAS[IAR] " - Aai "final value" (5.39)

Note that K i drops out. Therefore, when measurement bias errors exist, the
ridge solution bias converges to the OLS solution bias as the number of
iterations goes to -. The associated time constant of convergence will be
derived below.

Again looking at the iterative process that formed equation 5.38, it can
be seen that the ridge estimator's solution bias exponentially increases to
the OLS estimator's bias. This is portrayed in Figure 5.3. Figure 5.3 shows
tkt after I iteration (in), the ridge solution bias converges to within about
372 of the OLS solution bias. (After 2 iterations the ridge solution bias is
within 14% of the OLS solution bias.) For the ridge estimator, a time
constant (t) can be defined as the time it takes to converge within about e-
or 37% of the "final value", which in this case ij the OLS solution bias. To
find the time constant of convergence, consider iteration n
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Figure 5.3 Exponential increase of the ridge estimator's solution
bias to the OLS estimator's solution bias.
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I -C
BIAS[AR]i - D= (5.40)

1 - C

Let the BIAS[AR)i given by equation 5.40 be called an "initial value".
Determine for which n will

"initial value"
" 1 - e-' - 0.63 (5.41)

"final value"

r -I

1 CU
DAaj

1 C

L J
- 0.63

r1

- DAa±I
SD I

I -I

LJ

1 - Cu - 0.63

Cu - 0.37

ln[Cu] = ln[0.37)

n(ln[C]) - -1

n - -(ln[C])-l (5.42)

Replacing C in equation 5.42 with the canonical term it represents

-1

n - - [n (5.43)
ki + Ki

Then, the time constant of the ridge solution bias convergence to the OLS
solution is given by
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BC - ATm [-n Ki (5.44)
Xi +  Ki

where ATm is the update interval time. As a special note, reference [35)
shows that even increasing the number of range measurements available for
determining a position fix will not decrease the solution bias inflation
caused by poor geometry.

5.2.5.2 Convergence Criterion when a Large Initial Offset Exists

In order to define a convergence criterion for the selection of K i
values when a large initial offset is present, again consider the bias term of
the ridge estimator

BIAS[LR] _ (HTH + PR)'PRP + (HTH + PR)-IHTAB (5.45)

To simplify the analysis, assume that no measurement bias errors exist, (B =
0), therefore

BIAS[LR] - -(HTH + PR)'PP (5.46)

Transforming this term into its canonical coordinates yields

K i

BIAS[PR] i = - (5.47)
Xi + Ki

Based on equation 5.47, a system response time constant (ZSR) may be defined
by implementing a similar procedure to the one given in Section 5.2.5.1. The
result is identical.

5.2.6 Ridge Recursive Filter Development

So far, ridge regression has been presented using batch processing,
whose exposition is easier to follow than a recursive presentation. Section
5.1.1 points out that the performance of the batch and recursive presentation
is equivalent. A procedure for using ridge regression to explain the behavior
of the Kalman filter will now be discussed.

Similar to the derivation of the recursive Kalman filter in Section
5.1.2, obtain the state update equation (equation 5.7) in ridge form [51)

Rk - (Pk/k-I + PRk + B R-Hkr 1(P - k-1a Rk/k- 1 e BR-IYk) (5.48)

where the ridge parameter matrixf P k, has been added to counteract the
effects of an ill-conditioned (HkR-Hk) term (which is caused by poor
geometry).

Extending the work done by Kelly [51), equation 5.48 can be linearized
using equation 5.13 from Section 5.1.3 to obtain the linearized state update
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equation

- +
Rk =Rklk-+k + HR-'Rk)' (HR' 6Xk) (5.49)

where PRk has been added to the (P-k1 + HR'IHk) term in order to reduce the
effects of near collinearity. Equation 5.49 forms the basis for the extended
Ridge/Kalman filter. Also, the update equation for the error covariance
matrix is given by

Pk = (Pk/k-i + eRk + HkR'Hk ) ' (5.50)

Two cases may now be defined in which ridge regression can explain the
behavior of the Kalman filter. First, in the absence of system dynamics, the
ridge parameter matrix, PRO, is functionally equivalent to the state error
covariance matrix, Pk/k-1" Therefore, the EKF has similar convergence
properties (equation 5.44) when the model incorrectly represents the system
and Pk/k-I is small. Second, if dynamics exist, PRk is related to both Pk/k-I
and the system error covariance matrix, Q, given by the following relation

(4PkOT + Q)-1 - (OPkoT + W- + PRk (5.51)

where in this case, the - symbol means "relating to". Again, the EKF has
similar convergence properties when the model incorrectly represents the
system and (WPkOT + Q)'± is small.

Usually Pk is small, which means that the Pklk-1 term in equation 5.49
is large; therefore, there is no collinearity problem. Note that Pk varies as
the Kalman filter is updated, but normally a constant Q is added which
"limits" it (i.e. puts uncertainty in the model). As seen in the above
equation, Pk will be large when Q is large. Q is chosen large for dynamic
situations (i.e. turn-induced accelerations). When a poor geometry condition
exists in addition to the dynamic situation, PRk may be added to counteract
the large Q. Therefore, a proper PRk can be chosen to incorporate ridge
regression into the Kalman filter.

The procedure recommended for implementing ridge regression theory into
the Kalman filter depends upon three different situations [49):

(1) The GDOP is small, therefore HTR-1Hk is well-conditioned. Qk/k-I is
chosen to match the model's process noise covariance in the usual way. Pk is
unbiased.

(2) The GDOP is large, therefore HTR-'k is ill-conditioned. But
(P-I + HTR'B 1) is well-conditioned. Do nothing. The estimator is matched
to te model and Pk is unbiased.

(3) The GDOP is large and IkR'Hk is ill-conditioned. Pk/k-1 is identified
in the usual way and (P- k + HTR'Ek) is also ill-conditioned because the
elements of k/k- are not large enough to remove the near collinearity. The
rid e parameter matrix, PRk, is chosen to reduce the near collinearity of
(Pk/ + HR'Hk) using the selection rules given by equation 5.34.

Situations (1) and (2) are optimized in the usual way, i.e. choosing

Pk/k-I in the filter such that the innovations are white. Situation (3), on
the other hand, minimizes the MSE by applying equation 5.34 to determine PRk"
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When situation (3) occurs, only the values of P-k.- are adjusted by adding
PRk" In summary, the optimization procedure for situation (3) is:

1. Identify Pk/k-, and determine AOLS"

2. Calculate OtS = VT OLS and _ UTAB. Note that since the

measurement bias error B is unknown, it must be approximated.

3. Insert the calculation results from step 2 into equation 5.34
to obtain Ki for i - 1,2, ... p. (This gives Pk')

4. Using VT, form PR from PRk using equation 5.34 and add PRk
to (Pk- + HTR-Hk) to make it well-conditioned.

The key idea in developing the ridge recursive filter is the following:
Each step in the recursive process is viewed as a new prior linear model
wherein the last estimate &Rk/k-! is the prior equation for the next
iteration. The ridge solution is recomputed at each step using the above
selection rules to determine a proper PRk"
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6. MULTISENSOR NAVIGATION SOLUTION AND INTEGRITY

6.1 Multisensor Navigation Solution

Navigation measurement data can be expressed in terms of range or
bearing with respect to a reference station, as discussed in Chapter 2. The
relation between the measurement data and the user position is nonlinear, as
shown by the following two meisurement equations:

Range: Ri - ((X-X,) 2 + (Y-Y,)2 )1/2  (6.1)

Bearing: ei = arctan{(X-Xi)/(Y-Yi)} (6.2)

where (X,Y) is the user position, (Xi,Yj) is the location of reference station
i, R i is the range between the user and reference staticn i, and e is the
bearing of the user with respect to reference station i measured clockwise
with respect to North, see also Figure 2.2. Another widely used measurement
is the time difference (TD) between the time of arrivals of signals from two
different reference stations. The TD defines a hyperbolic line-of-position
and the measurement equation is given by:

TD: TDij - b - R, + R1 (6.3)

where b is the length of the baseline between station i and J, and R., R are
given by equation 6.1.

To obtain a position solutions, equations 6.1 through 6.3 are usually
linearized with respect to some reference point (X,Y), the a priori estimate.
Following the linearization procedure presented in Section 4.4.1, equations
6.1 through 6.3 can be linearized as follows.[ Xi YY__ ___ F6

6R i = (6.4)
R R 6Y

R2 J (6.5)

[ -x X i x - F 61
6TDij ..... (6.6)

R R1  Rj Ri  6Y

Equations 6.4 through 6.6 relate a change in the user position to a chi-za in
the range, bearing, and time difference measurements, respectively. In
general, each of these equations is of the form:

6yj - h i r6X 6Y]T (6.7)

where hi is the row vector corresponding to measurement number i, given by yi"
Equation 6.7 can be written to include all the different measurements as
follows.

6Y - H 6Q (6.8)
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where Y is the measurement vector, Q is the user state vector, and H is the
matrix containing the row vectors given by hi . Equation 6.8 can be used
directly in a recursive estimator such as the least squares estimator or an
extended Kalman filter, as discussed in Section 5.1.3.

The presence of an unknown variable in either of the above measurement
equations adds another variable to the user state vector P. For instance, if
a range measurement contains an unknown clock phase offset, then the
corresponding pseudorange measurement equation is given by:

Pseudorange: Ri = ((X-X )2 + (Y-Y )2 )1I2 + B (6.9)

where B is the unknown clock phase offset. The linearized measurement
equation is then given by:

X- Xi Yi ] 6X

6PR i  [ __ I 6Y (6.10)
L i  R i  6Y

5B

Similar expansions can be developed for other unknowns, e.g. velocity and
acceleration, which are to be determined simultaneously with the position
solution. This concludes the development of a unified solution for a
multisensor position solution.

6.2 Multisensor Integrity

A multisensor navigation system has many redundant measurements
available to perform fault detection and isolation (FDI), which is also
referred to as receiver autonomous integrity monitoring (RAIM). The basic
idea is to use the inconsistency in the measurement data to derive failuredetection and isolation parameters. The next section presents a derivation of
the least squares residual vector which is commonly used for FDI. The least
squares residual method does not rely on the history of the measurement data;
it is based on a "snapshot" least squares solution. The use of this method is
justified for several reasons:

1. The main purpose of the least squares residual method is to detect
slowly growing measurement errors which do not grow rapidly enough to be
detected by an input data editor. (An input data editor would simply
reject measurement data which gives rise to large residuals).

2. Filtering of the measurement data could reduce the false alarm rate;
however, for GPS, the measurement errors are dominated by Selective
Availability which has a correlation time on the order of minutes.
Also, the least squares solution still allows for some variance
reduction by averaging over several measurements.
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3. No matter what kind of estimator is used, the position bias error
caused by measurement bias errors will always converge to the position
bias error of the least squares estimator as sho-.'n in Chapter 5. In
almost all cases, the time constant of convergence is short compared to
the slow error growth of a difficult to detect measurement error.

4. Integrity information must be available soon after receiver start-up
or re-start.

5. The integrity performance of filtered data is difficult to guarantee
under dynamic conditions.

6.2.1 The Least Squares Residual Vector

With reference to Section 4.2 and Figure 4.1, the Projection Theorem
yields the ordinary least squares (OLS) estimator given by

- (HTH)-IHTy - AOLS (6.11)

Multiplying equation 6.11 by H yields

H- H(HTH).lHTy (6.12)

Y- P (6.13)

where the projection matrix P = H(HTH)-lHT projects the measurement vector Y
onto the estimation space defined by the column space of H. Therefore, the
rank of P for an overdetermined system is equal to the number of unknowns in
the user state vector P. This projection finds the closest point on the
estimation space with respect to Y by constructing a perpendicular line from Y
to the column space of H, see Figure 4.1.

The least squares residual vector eR, also referred to as the error
vector, is given by

!R X - 2 - X - PY - (I - P)X (6.14)

where (I - P) is also a projection matrix, it projects any vector Y onto the
orthogonal complement of the estimation space. The rank of (I - P) is equal
to the degrees of freedom of the overdetermined system. For instance,
consider the GPS solution which requires 4 measurements. If 6 measurements
are available, then the rank of (I - P) is equal to 2. This also means that
the number of rows of the (I - P) matrix can be reduced to 2.

The expected value of eR is

E[1R] - (I - P) E[X] - (I - P)AB (6.15)

where AB is a vector containing bias errors present in the measurements. The
covariance matrix of eR is

COVCgR] - E[ R T] - E[I - P)_T(- p)T]

- (I - P) COV[1] (I - P) (6.16)

where e is a vector which represents zero-mean measurement noise. Note that
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(I - p)T _ (I - P), which is one of the basic properties of a projection

matrix. The second property of a projection matrix is that (I - p)2 _ (I -

P); a projection foilowed by the same projection does not change the result
from the first projection. If the measurement noise is uncorrelated and
normally distributed with equal variances, then the covariance of the
measurement noise is

COV[e)] - o21 (6.17)

where a is the standard deviation of the measurement noise. It then follows
that the covariance of the error vector is

COV[RR] - C2(1 - P) (6.18)

Using the Projection Theorem, the error vector eR is easily obtained, as
given by equation 6.14. This error vector is widely used for failure
detection and isolation, see for instance references [52, 53, 54].

Following reference [55], the above general solution can be expanded to
include a weighting matrix W to represent the relative importance of the
measurements. The weighted least squares estimate is obtained by

W - (TWH)-HTW- (6.19)

where W is a positive definite weighting matrix. The best unbiased weighting
matrix is given by the inverse of the covariance matrix of the measurement
vector (55]

W = (COV[Y]) "1  (6.20)

Again, the projection Haw onto the estimation space and the error (X - Hpw)
are perpendicular. It then follows that the new projection matrix is given by

PW = H(HTWH).IHTw (6.21)

and the weighted error vector is given by

eRW - (I - PW)X (6.22)

6.2.2 Fault Detection and Isolation Using the Least Squares Residual Vector

Once the least squares residual vector or error vector has been
obtained, several methods are available to perform the failure detection and
isolation. References by Parkinson and Axelrad [52] and by Sturza [53] use
the square of the magnitude of the error vector as the basis for the decision
variable

D - eR (6.23)
If the measurements are normally distributed with the same variance 02, then

the normalized decision variable

Dn - D/02  (6.24)

has a chi-square distribution with rank(I - P) degrees of freedom. If the
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measurements have nonzero means, then D. has a noncentral chi-square
distribution. The noncentral chi-square distribution and calculation methods
for this distribution are documented in references [52, 53].

If the degrees of freedom, m, is greater than one, the decision
variable, D, could be scaled by the degrees of freedom. Reference [52]
suggests the use of the range residual parameter r for the test statistic or
integrity parameter:

r - V(D/m) - V(ieR/m) (6.25)

This particular integrity parameter has also been adopted for the baseline
scheme contained in the document "Minimum Operational Performance Standards
for Supplemental Airborne Navigation Equipment Using GPS" [15). Other
integrity parameters have been suggested, see for instance references [54, 56,
57, 58, 59, 60).

Next, the integrity parameter must be compared with a threshold, T. If
the threshold is exceeded, a fault is detected, otherwise, no fault is
detected. The performance of the integrity algorithm can be expressed in
terms of two probabilities:

Probability of a false alarm: PFA - P( r>T j no fault)
Probability of a missed detection: PD ' P( r<T fault)

Chapter 3 lists the preliminary requirements for supplemental navigation using
GPS for these probabilities: P;A < 0.002/Hr; and PMD < 0.001 on a per sample
basis. For GPS, it is generally assumed that independent samples are
available every 2 minutes (correlation time of Selective Availability). It
then follows that the PFA < 0.000067 on a per sample basis. From reference
[53], the threshold T must be set at approximately -1(16.6o2) for the case of
one degree of freedom. Assuming a standard deviation of approximately 30
meters, the threshold T - 122 meters. If the standard deviation of the
measurement noise is 100 meters, the threshold T - 407 meters.

To satisfy the probability of a missed detection for GPS, it follows
from reference (53] that the radial protection error has to be increased to
approximately 1500 meters, rather than the 550 meters required for
nonprecision approaches. It should be noted that the performance of the
integrity algorithm would improve if more measurements are available.
However, not all these measurements are required for positioning and FDI, the
question remains if all measurements have to be included in the FDI process.
Also, other detection techniques have been proposed which claim to perform
better than the above method [54]. Further studies are recommended to analyze
the performance of several integrity techniques, and to quantify the
performance of specific multisensor systems, such as GPS/LORAN.

In addition to fault detection, several techniques have been proposed to
perform fault isolation, such as the maximum likelihood estimation approach
[53], comparison of detection thresholds based on different subsets (52], and
coordinate changes to maximize the visibility of a certain measurement error
(54]. A detailed study of these techniques is outside the scope of this
report, but is required to address the issue of sole means navigation.
Therefore, further studies are also recommended in this area.
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7. PROTOTYPE HYBRID GPS/LORAN RECEIVER

7.1 Hardware Configuration

The block diagram of the hardware configuration for the prototype hybrid
GPS/LORAN receiver is shown in Figure 7.1. A four-channel GPS receiver
(Motorola, model Eagle) and an eight-channel LORAN-C receiver (Advanced
Navigation, Inc., Model 5300), both employing continuous tracking, are used to
collect GPS and LORAN-C data. Only the raw measurement data from both
receivers is used to determine the position solution. The two receivers are
interfaced to a microcomputer (model AT) through two serial communication
ports. The microcomputer is also interfaced to a course deviation indicator
(CDI, model KI 206), through a parallel port, to display the guidance data to
the pilot. All of the hardware used is commercially available equipment,
except for the interface between the microcomputer parallel port and the CDI
instrument, which was designed and implemented at Ohio University.

7.2 Software Algorithms

The software modules implemented on the hybrid GPS/LORAN receiver are
executed in realtime. The algorithm is given by:

initialization
WHILE in operation

DO once per second
check for keyboard input data
IF keyboard input data

process keyboard data
END
check for GPS and LORAN-C measurement data, and

request LORAN-C data
IF sufficient data

calculate position
determine integrity

END
update CDI and status screen
store all relevant data

END
END
system shut-down

7.2.1 Initialization

During initialization, the following tasks are performed:

1. Open the GPS/LORAN initialization data file.
2. Read the following data from the initialization data file:

a. GPS ephemerides
b. LORAN-C transmitter locations
c. LORAN-C propagation data
d. Waypoints
e. Position estimate
f. Integrity threshold
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Figure 7.1 Hardware configuration of the prototype
hybrid GPSILORAN receiver.
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g. CDI centering and offset corrections
h. Ephemeris threshold (for comparison of old and

new ephemeris data)

3. Close the GPS/LORAN initialization data file.
4. Open the GPS/LORAN output file.
5. Install serial communication interrupt service routines.
6. Output the status screen.

7.2.2 Check For and Process Keyboard Input Data

The keyboard input buffer is checked for input data. If input data is
present, the data is read and processed according to the list of possible
commands given in Table 7.1.

Command Action

Q j Initiate receiver shut-down.
Wxy Waypoint, from x to y, where x,y = 0,1, ... ,9.
Fmx Inject failure into signal number m; x is the failure type

x = A, a 100 meter step failure
x - B, a 1,000 meter step failure
x - C, a 10,000 meter step failure
x - D, a 1 m/s ramp failure
x - E, a 2 m/s ramp failure
x = F, 3 m/s ramp failure
x - G, a 4 m/s ramp failure
x - H, a 5 m/s ramp failure
x - I, a 10 mis ramp failure
x - J, a 25 m/s ramp failure
x - K, a 50 m/s ramp failure
x - L, a 100 m/s ramp failure

R Reset injected failure to zero.
A Set CDI scale to ±1.25 nmi (approach mode).
E Set CDI scale to ±5.00 nmi (enroute mode).
C Clear the display.

Table 7.1 List of keyboard commands for the GPS/LORAN receiver.

7.2.3 Check for GPS and LORAN-C Measurement Data, and Request LORAN-C Data

During system initialization, the GPS receiver is commanded to send
measurement date at a rate of once per second. As soon as GPS data is
received, a LORAN-C measurement trigger command must be sent to ensure that
the LORAN-C data is valid at the same time as the GPS data. Following the
measurement trigger command, LORAN-C data is requested and collected for up to
eight receiver channels. All data is verified for validity as indicated by
the receivers. If at least five measurements are valid, sufficient data is
available for the position calculation. The five measurements are used to
solve for three-dimensional position, clock offset with respect to GPS time,
and clock offset with respect to LORAN-C time. The number of required
measurements could be reduced to four if the GPS and LORAN-C receivers measure
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the time-of-arrivals with respect to the same clock, and if the hardware
delays of both receivers are known. A minimum of six valid measurements are
required to execute the integrity algorithm.

7.2.4 Calculate Position

The hybrid position solution is based on a least-squares solution. The
GPS and LORAN-C measurements are equally weighted. Reference [4] contains a
detailed description of the algorithm used. Since the measurements from OPS
and LORAN-C are equally weighted, the accuracy of the hybrid system will be
mostly determined by the LORAN measurements. For this effort, standard LORAN
propagation models are used such that the achieved accuracies are
representative for current LORAN receivers. Because of this, the accuracy of
the hybrid system will not be as good as that provided by GPS; however, the
availability and integrity of the hybrid system exceeds that of GPS by several
orders of magnitude [4]. At the same time, the hybrid system accuracies are
still well within the current requirements. The accuracy of the hybrid
GPS/LORAN system can be improved upon significantly through one or more of the
following methods:

1. Use of a weighting matrix W to incorporate the statistical knowledge
of the measurements (see Section 6.1);

2. Calibration of LORAN using validated GPS positions;

3. Use of improved LORAN propagation models which could contain seasonal
correction data based on the LORAN-C monitor network.

Especially the latter two methods are very promising, these methods have the
potential to achieve LORAN measurement accuracies very close to those provided
by CPS [4, 8, 61, 62, 63]. The effects on the integrity performance of the
first method is not well understood at this time. Further efforts are
recommended with respect to each of the above methods to improve the accuracy
of hybrid GPS/LORAN.

7.2.5 Determine Integrity

Integrity is calculated using the range residual parameter given by
equation 6.25 in Chapter 6. It should be noted that the performance of this
particular integrity scheme does not fully demonstrate the integrity
capabilities of a hybrid GPS/LORAN system. For instance, the LORAN-C system
will have its own integrity monitor (also known as aviation blink), which is
anticipated to be fully operational by 1992. At that time, the main function
of the receiver autonomous integrity monitor for LORAN would be to detect rare
occurrences of receiver cycle slip. One of the purposes of this effort,
however, is to evaluate the range residual parameter technique, which is the
baseline RAIM scheme proposed in reference [15].

7.2.6 Update CDI and Status Screen

The current "from" and "to" waypoints are used to calculate the course
deviation to be displayed to the pilot. The CDI needle deviation is scaled
according to the phase of flight; ±1.25 nmi for the nonprecision approach, and
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±5 nmi for enroute navigation. The results of the integrity calculation are
used to drive the CDI flag. The status screen is used to monitor the
performance of the GPS/LORAN receiver, and to observe the numerical effects of
the injection of signal failures. Parameters of interest include: current
time, position estimate, GPS satellites and LORAN transmitters being used,
current waypoints, injected failure type and magnitude, CDI value, integrity
parameter and integrity flag.

7.2.7 Store all Relevant Data

All data collected from the GPS and the LORAN-C receiver is recorded on
a flexible disk. This data allo'q for a complete flight evaluation in the
laboratory environment, see also Chapter 8.

7.2.8 System Shut-Down

During system shut-down, the following tasks are performed:

1. Close the GPS/LORAN output file.
2. Save all new ephemeris data collected during the run.
3. Remove serial communication interrupt service routines.

7.3 Prototype GPS/LORAN Receiver Installation

The prototype GPS/LORAN receiver is installed in a Piper Saratoga PA-
32-301, N8238C, which is owned by Ohio University. The N8238C is a 1980 model
aircraft with a fixed landing-gear, and a useful load capacity of 1,537
pounds. The aircraft is equipped as a flying laboratory.

The GPS antenna/pre-amplifier is mounted on top of the fuselage at a
distance of approximately 4 feet from the front windshield. The antenna/pre-
amplifier is 4.5 inches square, and 2.5 inches high. Located in the top of
the pre-amplifier is a micro-strip antenna. A one-foot slanted LORAN antenna
is also mounted on top of the fuselage, approximately 8 feet back from the GPS
antenna. Both antennas are connected to the corresponding receivers which are
located in an equipment rack together with the microcomputer. This equipment
rack replaces one of the passenger seats in the back of the airplane. The
microcomputer is also connected to a KI 206 course deviation indicator mounted
in the primary view of the pilot. The equipment is connected to the aircraft
power system, which provides 14 Volts and 28 Volts DC; and 110 Volts AC
through a solid state power invertor. The prototype receiver can be installed
in less than one hour.
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8. POST-FLIGHT REAL TIME GPS/LORAN SIMULATOR

A post-flight real time simulator has been developed to support the
design and evaluation of the GPS/LORAN receiver. The simulator consists of a
microccmputer which simulates the CPS and LORAN receivers based on previously
collected flight data. Figure 8.1 shows the block diagram of the simulator
configuration. The flight data is read by the simulator computer program and
transmitted over two serial ports following the same protocols as those
employed by the CPS and LORAN receivers. Initially, the simulator used data
which was collected in September of 1988 [4). This data includes several
turns and data outages. Based on this data, the real time software could be
fully exercised in the laboratory environment. This proved to be a very
powerful approach, since several rotential problems were corrected before the
actual flight tests. These problems ranged from incorrect ephemeris
information obtained from the GPS receiver to numerical problems due to the
injection of large signal failures.
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9. LABORATORY TESTING OF THE GPS/LORAN RECEIVER USING FLIGHT DATA

GPS/LORAN flight data collected on September 16, 1988 was used to
evaluate the realtime hybrid GPS/LORAN software. This particular set of
flight data was chosen because a differential GPS (DGPS) reference trajectory
is available. The DGPS trajectory is based on GPS flight data corrected for
known GPS errors as determined by a GPS reference station. This reference
station consists of a GPS receiver and processing equipment. The accuracy of
the DGPS system is better than 10 meters (2 drms) [4). This level of accuracy
qualifies DGPS very well for a truth reference system for the evaluation of
navigation results where the highest accuracy requirement is 100 m (2 drms).
Reference [4) describes the DGPS system used for this study in detail.

Figure 9.1 shows the two-dimensional position errors as a function of
time, and Figure 9.2 shows the corresponding scatter plot. The flight lasted
for approximately 70 minutes. Two relatively large discontinuities in the
data are caused by the exchange of flexible disks and by a system restart.
The system was restarted to evaluate the re-acquisition of the navigation
signals during operational conditions. A few smaller discontinuities are the
result of satellite switching by the airborne GPS receiver. During satellite
switching, the receiver temporarily enters an altitude-hold mode. The
accuracy of the resulting differential reference trajectory is then no longer
determined, and consequently, the trajectory cannot be used for the evaluation
of the hybrid GPS/LORAN receiver. Note that the hybrid receiver can still
continue to provide a solution based on the three remaining satellites and two
or more LORAN-C transmitters.

The largest position errors occur during the middle of the flight.
These deviations are caused be a relatively poor GPS geometry. Also, all
sudden changes in the magnitude of the two-dimensional error are caused by
transitions to different sets of four GPS satellites. The horizontal position
accuracy for the hybrid system, based on all measurements (785 data points),
is 210 meters (2 drms), with respect to the DGPS trajectory. The mean
position errors in the North and East directions were found to be -52 meters
and 30 meters, respectively. The 2 drms positioning accuracy is well within
all current requirements for enroute navigation (2778 m), terminal navigation
(2037 m), and nonprecision approaches (556 m).

Next, the performance of the integrity algorithm was addressed. A
straight-line section of the flight data was used which lasted for
approximately 400 seconds. During this time, a 50 meters per second ramp
error was simulated on one of the measurements, as depicted in Figure 9.3.
The actual value of the ramp is not important for the performance of the
detection algorithm, since the algorithm takes "snapshots" of the measurement
data. The ramp error was repeated for all seven measurements, which consisted
of four GPS satellites: SV6, sV9, SV11, and SV12; and three LORAN stations:
Carolina Beach, Dana, and Seneca. Figures 9.4 and 9.5 show the resulting
horizontal radial position errors and the integrity or range residual
parameters. The integrity parameter corresponds to eR in Figure 4.1.

In the absence of malfunctions, both the integrity parameter and the
horizontal radial position error are well below 200 m. In the case of GPS or
Dana malfunctions, the integrity parameter grows faster than the corresponding
radial position error. However, both Seneca and Carolina Beach malfunctions
cause the radial position error to grow rather rapidly. Detection of these
malfunctions is still possible as indicated by Figure 9.4,
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but the threshold for the integrity parameter must be set much lower than for
all other cases.

Further analysis of the measurement geometries for all the cases
depicted in Figures 9.4 and 9.5 explains the larger sensitivity to Seneca and
Carolina Beach malfunctions. The measurement geometry is shown in Figure 9.6,
where the arrows represent the line-of-sight vectors to the GPS satellites and
the LORAN transmitters projected onto the horizontal plane and normalized.
The horizontal dilutions of precision (HDOP) for the all-in-view solution and
for each of the sub-sets are given in Table 9.1.

Solution HDOP

All-in-view 1.08
Sub-set without Seneca 1.94
Sub-set without Carolina Beach 2.17
Sub-set without Dana 1.65
Sub-set without Satellite 6 1.14
Sub-set without Satellite 9 1.15
Sub-set without Satellite 11 1.14
Sub-set without Satellite 12 1.13

Table 9.1 Horizontal dilutions of precision (HDGP) for the all-in-view
solution and for each of the sub-setq.

From Figure 9.6 and Table 9.1 it can be seen that the solutions without Seneca
and Carolina Beach significantly affect the remaining geometry. For both
cases, the HDOP without either Seneca or Carolina Beach is approximately twice
as large as the all-in-view solution. This means that a measurement error in
either of these signals has a much larger effect on the horizontal radial
position error than any of the other five signals, which is clearly shown by
Figures 9.4 and 9.5.

In addition to the effects of geometry, Figures 9.4 and 9.5 also show
the effects of initial bias errors in the measurements. In some of the cases,
the integrity parameter initially decreases, which indicates that the injected
failure compensates for the measurement error. As expected, this also
corresponds to a smaller radial position error. After 10 to 20 seconds,
however, all measurement error has been compensated for by the injected error,
and the integrity parameter will steadily grow.
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Figure 9.6 GPSILORA!l measurement geometry.
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10. FLIGHT TESTING OF THE GPS/LORAN RECEIVER

The prototype hybrid GPS/LORAN receiver has been flight tested on two
occasions at the time of this writing. The first flight test occurred on
August 21, 1990; and the second flight test took place on August 23, 1990.
Both flight tests were performed in the vicinity of the Ohio University
airport at Albany, Ohio. The duration of flight number one was approximately
34 minutes, and the duration of flight number two was approximately 52
minutes. Figures 10.1 and 10.2 show the ground tracks for the two flight
tests. The ground tracks reflect the simulated signal malfunctions; both
flight tracks contain many flight path deviations caused by the injection of
simulated signal malfunctions. Tables 10.1 and 10.2 list the sequence of
events for each of the flight tests. The emphasis of the flight tests was on
the following two items:

1. Operational verification of a realtime hybrid GPS/LORAN receiver.

2. Preliminary assessment of the flight technical error and the impact
of failure modes.

Based on the flight tests, it was apparent that the hybrid GPS/LORAN receiver
performed in accordance with its design. Both test pilots noted that the
course deviation indicator is very responsive and that the indicated course
cumpares favorably with other area navigation equipment. Also, cross-checks
with DME, VOR, NDB, and the ILS localizer indicated that the GPS/LORAN
horizontal accuracy is on the order of 0.1 nmi. This compares well with the
laboratory results provided in Chapter 8, which are based on flight data
collected under similar circumstances.

The flight technical error is the accuracy with which the aircraft is
controlled as measured by the indicated aircraft position with respect to the
indicated command or desired position. Only the cross-track portion of the
flight technical error is used for analysis purposes. (The cross-track error
is identical to the signal send to the course deviation indicator). The
analysis of the flight technical error is very preliminary. Because of
instrument meteorological conditions (IMC) during take-off and landing, the
GPSILORAN course could not be flown. Also, both pilots were briefed about the
nature of the flight experiment and they were specifically instructed to fly
the CDI as closely as possible. Nevertheless, the FTE error traces in terms
of the CDI deviations for both flights are shown in Figures 10.3 and 10.4.
Note that for flight number one, the full-scale CDI deflection is ±5 nmi
(enroute guidance) or ±1.25 nmi (approach). Both test pilots found a smaller
full-scale CDI deflection nmi desireable for the enroute mode. Therefore,
flight number two used ±2.5 nmi for the enroute guidance and ±1.25 for the
approach mode. Both pilots utilized an ILS localizer approach to runway 25 at
the end of the mission. As a result, the latter part of the FTE traces is not
representative for the GPS/LORAN FTE; however, it is a good indication of the
GPS/LORAN cross-track error. For both flights, the GPS/LORAN cross-track
error is of the order of 0.1 nmi. Since the offset is the same for both
flights, it is most likely caused by uncorrected LORAN propagation delays and
secondary station clock offsets. The spikes in the FTE traces are either
caused by waypoint switching or by the injection of step failures. These do
not reflect the ability of the pilot to fly the indicated GPS/LORAN course.
Because of the capability of the GPS receiver to always know the exact value
of the FTE, a study is recommended to investigate the effects of flagging a
nonprecision approach based on a FTE of such magnitude that the approach
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Figure 10.2 Hybrid GPS/LORAII ground track for flight two, August 23, 1990.
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Figure 10.4 Flight technical error trace for flight two.

69



Time (GMT) Event

17:09:00 Take-off from UNI, to Henderson VOR.
17:09:30 GPS/LORAN program stopped and restarted to verify correct

operation of the data collection.
17:10:37 Receiver is tracking SV2, SV11, SVI3, SV14, Seneca, Dana,

and Carolina Beach.
17:12:00 CDI switched to expanded scale per pilot request.
17:14:47 Failure 1: SV2 100 m/s ramp.
17:15:00 Integrity threshold of 300 m exceeded, CDI is flagged.
17:15:05 Reset failure 1.
17:15:57 Failure 2: SV2 25 m/s ramp.
17:17:33 Range error has grown to 2400 m, integrity parameter = 316.
17:17:45 Reset failure 2.

DME cross-check, Henderson DME agrees to within 0.1 nmi with
range indicated by GPS/LORAN; baro-altitude - 4,000 ft.

17:21:13 Standard left turn towards the University NDB.
17:24:35 GPS/LORAN program stopped and restarted to save collected

data to flexible disk.
17:25:05 GPS/LORAN receiver operational, waypoints: from Henderson

VOR to University NDB, CDI in enroute mode.
17:27:35 Failure 3: Carolina Beach 10,000 m step.
17:28:30 Reset failure 3.
17:29:00 Failure 4: SV14 50 m/s ramp.
17:30:00 Reset failure 4.
17:30:10 Failure 5: Dana 100 m/s ramp.
17:31:10 Reset failure 5.
17:31:23 Initiation of descend.
17:32:30 CDI switched to expanded scale (approach mode).
17:34:15 Waypoint changed to threshold of RW 25.
17:38:20 6.6 nmi from runway threshold, baro-altitude - 2,500 ft
17:38:50 Cross-check: good agreement with ILS localizer.
17:39:40 Passing university NDB, 4.76 nmi from threshold of RW 25.
17:41:15 Cross-check on final: GPS/LORAN ncedle shows a slight

deflection to the left.
17:42:00 Visual to RW 25, preparing for a full stop.
17:43:00 Touch-down.
17:43:53 GPS/LORAN receiver program stopped.

Table 10.1 Sequence of events for flight test one, August 21, 1990.
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Time (GMT) Event

20:01:50 Take-off from UNI, to Yellow Bud VOR.
20:04:00 At 2,500 ft and climbing. Receiver is tracking SV9, SV13,

SV14, SV20, Seneca, Dana, and Carolina Beach.
20:06:25 Level at 4,000 ft, difficulty tracking SV20
20:08:03 Failure 6: SV9 10,000 m step.
20:08:20 Reset failure 6.
20:10:30 Failure 7: Dana 25 m/s ramp.
20:11:07 CDI is flagged, reset of failure 6.
20:14:17 Failure 8: Carolina Beach 1,000 m step, little effect.

Difficulty tracking SV9. Reset failure 8.

20:16:00 Failure 9: SV20, 50 m/s ramp.
20:16:09 CDI is flagged, still difficulties tracktng SV9.

Reset failure 9.
20:20:00 GPS/LORAN program stopped and restarted to save collected

data to flexible disk.
20:20:37 GPS/LORAN receiver operational, waypoints from University

NDB to Henderson VOR. Tracking SV16, SV13, SVI4, SV20.
20:22:23 Waypoints from Henderson VOR to University NDB.
20:24:57 Passing Yellow Bud VOR
20:27:25 Failure 10: SVI4, 1,000 m step. GPS/LORAN altitude changed

by +3,000 ft.
20:28:29 Reset failure 10.
20:28-40 Failure 11: Seneca 10,000 m step, CDI is flagged,

reset failure 11.
20:31:29 Failure 12: SV16, 5 m/s ramp.
20:32:25 Reset failure 12, error is growing too slowly.
20:32:50 Failure 13: SVI6, 10 m/s ramp.
20:35:10 CDI is flagged, reset failure 13, CDI changes by -30.
20:36:00 Descend to 3,000 ft per ATC request, 16 nmi to beacon.
20:38:07 Failure 14: Dana, 10,000 m step, CDI is flagged.
20:38:17 Reset failure 14.
20:40:01 Failure 15: SV13, 100 m/s ramp.
20:41:01 CDI is flagged. Reset failure 15.
20:43:43 8.3 nmi to NDB

20:44:45 Switched to approach mode, waypoint from University NDB to
threshold of RW 25.

20:46:30 Procedure turn around NDB.
20:48:23 On course, Range 8.5 nmi to RW 25, GPS/LORAN CDI needle

slightly to the left compared to the ILS localizer.
20:49:11 At 2,500 ft, crossed over NDB.
20:53:43 Touch-down.
20:54:43 GPS/LORAN receiver program stopped.

Table 10.2 Sequence of events for flight test two, August 23, 1990.
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cannot be safely completed. Potential benefits are increased safety and a
possible reduction in the size of obstacle clearance surfaces. Furthermore,
this would also accomodate the development of generic approach procedures for
earth referenced navigation systems.

To analyze the impact of signal malfunctions, a total of fifteen
simulated failures were injected into the measurement data during the two test
flights. Both sudden errors (step failures) and slowly increasing errors
(ramp failures) were simulated. Figures 10.5 and 10.6 show the horizontal
radial differences between the unperturbed GPS/LORAN flight trajectory and the
trajectory with the simulated signal failures, as well as the integrity
parameter (range residual parameter). Also indicated in these two figures are
the numbers corresponding to each of the failures. Flight number one used an
integrity parameter threshold of 300 m, flight number two used an integrity
parameter threshold of 400 m. All signal malfunctions which would have caused
unacceptable course deviations were detected by the integrity algorithm.

Most failures increase the integrity parameter and the radial position
error as expected, except for failure number 8. This failure is a 1,000 m.
step on the Carolina Beach LORAN measurement. The integrity parameter reduces
from 300 meters to approximately 40 meters, while the radial position
difference grows to 410 meters. This type of error could easily be detected
by a time-history filter on each of the measurements. Moreover, the Carolina
Beach transmitter would probably have "blinked" under the simulated condition.
However, if this error would be slowly increasing, detection would be much
harder. Closer observation of the data showed that the GPS receiver
experienced difficulties tracking satellite number 9. As a result, the
Carolina Beach malfunction is expected to have a large impact on the position
error (see also Chapter 8). Although this error might not be detected at the
time the radial error threshold is exceeded, the least squares residual method
would eventually raise the flag.

Although the test pilots knew of our capability to inject signal
failures, relevant pilot remarks with respect to each of the fifteen failure
scenarios are given in Table 10.3. It is interesting to note that both test
pilots detected significant failures before the integrity threshold was
surpassed. As expected, sudden failures are easy to detect by the pilot;
however, this is only true if the pilot almost continuously monitors the CDI,
otherwise, small step failures go undetected by the pilot.

In the presence of strong winds, it is difficult to tell the difference
between a heading correction to compensate for a cross wind, or a heading
correction caused by a malfunctioning navigation signal, especially if the net
effect is in the same direction. It also became evident that the pilots were
using the change in the indicated magnetic course to detect the small ramp
failures. In addition to the pilot remarks, the GPS/LORAN system operators in
the back of the aircraft also noticed large climbfd-scend rates and large
negative altitudes on the status screen as a result of the injected failures.
In some of the cases, the unreasonableness of the GPS/LORAN altitude was
apparent long before the integrity parameter would exceed the threshold.

Based on the results of the flight experiments, the following is
recommended for further investigations: evaluation of integrity and failure
isolation schemes which are not just based on the inconsistency of the
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Failure Description Test Pilot Remark

I1. SV2 100 m/s ramp After a few seconds, pilot notices a deviation
to the left, pilot reports that he is
correcting for the wind. Just before the flag
appears, pilot confirms a definite command to
fly left.
Flag is noticed immediately by pilot.

2. SV2 25 m/s ramp After approx. 30 seconds, pilot notices a slow
deviation to the left. Flag is noticed by the
pilot within one second. Pilot reports a
heading change of 10 degrees.

3. Carolina 10,000 m step Pilot notices flag immediately, CDI deviation
is not significant.

4. SV14 50 m/s ramp Error discarded, pilot workload did not allow
for monitoring/flying the GPS/LORAN CDI.

5. Dana 100 m/s ramp Error discarded because of pilot workload.

6. SV9 10,000 m step Pilot notices immediately a major error.
7. Dana 25 m/s ramp Error not noticed by pilot until several

seconds after CDI flag. Pilot remarks that
strong winds are present, he thought that he
was correcting for a cross wind.

8. Carolina 1,000 m step Not much effect on the navigation, not
noticed by pilot.

9. SV20 50 m/s ramp CDI flag detected by pilot within a few sec.
10. SV14 1,000 m step No flag, but pilots notices wrong CDI track.
11. Seneca 10,000 m step CDI flagged, pilot notices error.
12. S'116 5 m/s ramp Malfunction not noticed by pilot, error

injection aborted, it would take too long
before CDI would be flagged.

13. SV16 10 m/s ramp Pilot starts noticing malfunction when the
integrity parameter is 340 m. CDI flag is
detected quickly.

114. Dana 10,000 m step Error discarded because of pilot workload.
I CDI was flagged.

15. SV13 100 m/s ramp Pilot notices slight jerk to the right,
which he notices because the correction is
in a direction opposite the wind.

Table 10.3 GPS/LORAN simulated failure scenarios with test pilots' remarks.
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GPS/LORAN measurements, but which also take the following information into
account:

- reasonableress of the climb/descend rate and altitude as indicated by
GPS/LORAN;

- rate of change and magnitude of the differences between the indicated
GPS/LORAN heading, and the calculated heading and/or indicated magnetic
heading.
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11. CONCLUSIONS

The first part of this report shows the derivation of the ordinary least
squares (OLS) estimator from the linear model using the Projection Theorem.
The performance of the OLS is subjected to a detailed error analysis which
includes the effects of geometry and measurement errors, both bias and noise.
Using similar procedures, the extended Ridge and Kalman filters are derived
which are representative for the classes of biased and unbiased estimators,
respectively. It is shown that in the presence of measurement bias errors,
both estimators converge to the OLS inflation of the position error. It is
therefore concluded that in the case of dominant measurement bias errors (e.g.
GPS or LORAN), the integrity monitoring performance offered by the OLS
estimator cannot be improved upon. It was also found that the Ridge estimator
can be used to explain/optimize the performance of a mismatched Kalman filter.
This provides a very helpful insight into the performance of the Kalman filter
in the presence of unmodeled dynamics.

Based on the conclusion that the OLS estimator is sufficient to perform
integrity monitoring, a general solution methodology is presented for a
multisensor navigation system. The range residual integrity parameter was
derived, again using the Projection Theorem.

The above results have been applied to a realtime prototype hybrid
GPS/LORAN receiver. Two flight tests revealed that the hybrid GPS/LORAN
receiver performs in accordance with its design. The course deviation
indicator is responsive and the indicated course compares favorably with other
area navigation equipment. Out of a total of fifteen simulated signal
malfunctions, twelve malfunctions which would have caused unacceptable course
deviations were detected by the range residual integrity algorithm.

Equal weighting of GPS and LORAN measurements is used for the flight
tests. Therefore, the accuracy of the hybrid system will be mostly determined
by the LORAN measurementc. Standard LORAN propagation models are used such
that the achieved accuracies are representative for current LORAN receivers.
Because of this, the accuracy of the hybrid system will not be as good as that
provided by GPS; however, the availability and integrity of the hybrid system
exceeds that of GPS by several orders of magnitude [4]. At the same time, the
hybrid system accuracies were still found to be well within all current
requirements as listed in Chapter 3. It is also concluded that the accuracy
of hybrid GPS/LORAN can be improved upon significantly through LORAN
calibration or by using a weighting matrix in the hybrid solution, see Section
6.1.

In summary, hybrid GPS/LORAN is a successful case study of fully hybrid,
multisensor navigation. Similar performance characteristics may be
anticipated for other multisensor systems based on sensors such as GPS, LORAN,
GLONASS, Omega, and baro-altimeter.
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12. RECOMMENDATIONS

Based on the findings presented in this report, the following
recommendations are made for further efforts in the areas of multisensor
navigation and GPS/LORAN:

1. Development of a generic approach procedure for earth referenced
navigation systems.

2. Study of the effects of flagging a nonprecision approach based on a
flight technical error of such magnitude that the approach cannot be safely
completed. Potential benefits are increased safety and a possible reduction
in the size of obstacle clearance surfaces.

3. Continued integration of hybrid GPS/LORAN into the National Airspace
System. The results of this study can also be applied to multisensor
navigation systems in general. It is recommended that this effort takes place
along the following avenues:

- Continued flight testing of the prototype hybrid GPS/LORAN receiver to
address the flight technical error and the impact of failure modes on
enroute navigation and nonprecision approach operations;

- Detailed study of failure isolation schemes, which is required for
sole means navigation;

- Development and evaluation of criteria to be used for the
certification of hybrid GPS/LORAN receivers;

- Develo,ment and evaluation of criteria to be used for the definition
of sole means of navigation systems.

4. Specific efforts to further integrate GPS and LORAN should also
address promising accuracy improvement techniques, which have the potential to
achieve LORAN measurement accuracies comparable to those provided by GPS [4,
8, 61-63]:

- Use of a weighting mptrix W to incorporate the statistical knowledge
of the measurements (see Section 6.1);

- Calibration of LORAN using validated GPS positions;

- Use of improved LORAN propagation models which could contain seasonal
correction data based on the LORAN-C monitor network.

5. Evaluation of integrity and failure isolation schemes which are not
just based on the inconsistency of the GPS/LORAN measurements, but which also
take the following information into account:

- reasonableness of the climb/descend rate and altitude as indicated by
GPS/LORAN;

- rate of change and magnitude of the differences between the indicated
GPS/LORAN heading, and the calculated heading and/or indicated magnetic
heading.
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